摘要:随机域名是指由随机域名算法生成的域名,被针对计算机网络系统的恶意软件广泛使用,随机域名的检测任务是域名系统过滤攻击流量的基础性工作.传统方法对随机域名的检测效果不理想,精确率与召回率较低,导致过滤攻击流量时会出现较多的误判.本文提出和实现了一种基于GRU型循环神经网络的随机域名检测模型,该模型首先将域名转换成向量,然后借助GRU自动学习域名向量的特征,最后通过神经网络计算分类.相比于传统方法,该模型不再需要人工提取特征的过程,减少了特征提取的时间.且经过算法生成数据与真实场景数据的实验验证,该方法在随机域名检测任务中相比传统模型表现更加出色.