基于粒子群算法和BP神经网络的桑黄液体发酵实验环境优化
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Experimental Environments Optimization for Phellinus Igniarius Based on Particle Swarm Optimization and BP Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    黄酮,是桑黄真菌液体发酵的二级产物,具有重要的医药价值,本文提出了一种结合粒子群算法和BP神经网络的混合智能算法,用于优化桑黄液体发酵的实验环境和提高黄酮产量.本文中的算法基于25组桑黄液体发酵的实验数据,训练BP神经网络模型作为黄酮产量的预测模型,实验中与传统响应面方法中的数学回归模型做了比对试验,预测准确度提高了15%.BP神经网络预测模型作为评价函数结合粒子群算法进行实验环境寻优,通过数据模拟实验,获得了桑黄液体发酵的最佳培养条件,桑黄黄酮的产量由之前的约1532.83 μg/mL提高到约1896.4 μg/mL,产量提高了约23.72%.

    Abstract:

    Flavonoids are the secondary products of liquid fermentation of Phellinus igniarius and have important medical value. In this study, a hybrid intelligent algorithm combining Particle Swarm Optimization (PSO) and BP neural network is proposed to optimize the experimental environment of fermentation of Phellinus igniarius and to improve the flavonoids yield. The BP neural network is trained based on the 25 groups of experimental data and as the prediction model of flavonoid production. The experiment is compared with the mathematical regression model in the traditional response surface methodology to predict the accuracy increased by 15%. The BP neural network prediction model was used as an evaluation function in combination with PSO algorithm to optimize the experimental environment. According to the data simulation experiment, the best culture conditions of the liquid fermentation of Phellinus igniarius were obtained. The yield of Phellinus flavonoids from the previous about 1532.83 μg/mL to about 1896.4 μg/mL, yield increased by about 23.72%.

    参考文献
    相似文献
    引证文献
引用本文

孙贝贝,何旭,夏盛瑜.基于粒子群算法和BP神经网络的桑黄液体发酵实验环境优化.计算机系统应用,2018,27(7):156-161

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-11-30
  • 最后修改日期:2017-12-21
  • 录用日期:
  • 在线发布日期: 2018-06-27
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号