一种检测护照线性缺陷的方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Approach to Detecting Linear Defects in Passport
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    介绍了一种检测护照质量缺陷的方法.这种护照质量缺陷称为脏版,通常表现为线性,是在护照印刷过程中产生的.这种缺陷会对护照本整体产生较为严重影响.然而检测主要困难在于其蹭脏的颜色和图像背景纹理接近,因此还没有相关的效检测手段.为了这种脏版缺陷我们首先对样本图像进行下采样,并运用多尺度分析的方法来减少背景图案对检测结果的影响,随后采用线段检测分割算法来获得这些线性缺陷.我们在样本图像和模板图像中采用相同的检测方法.随即匹配每个样本中检测到的线段,以去除真正的背景条纹,而剩下未能匹配的线段则被识别为脏版缺陷.我们还使用这些线性缺陷几乎都是垂直的现有知识来提高检测精度.实验表明,这种检测线性缺陷的方法是有效.我们认为,通过这种方法来控制护照质量和减少对后续生产的影响是有非常有帮助的.

    Abstract:

    This paper introduces an approach to detect the quality defects of passports. The scumming defects of the passports are generally linear and produced in the course of passport printing. This phenomenon will have a severe impact on the overall quality of the passport. The chief difficulty to detect above defect is that the color of the scumming is close to the background texture of the image. Consequently, there is no relevant effectively detecting method. In order to detect the scumming defect, we first down-sample the image and analyze the multi-scale for reducing the influence of background pattern, and then employ a line segment detector to get these linear defects. The same line defect detection is conducted in both the samples and the template. We match the detected lines in each sample to eliminate the genuine lines while the non-matched lines are identified as defects. We also use the prior knowledge that linear defects are nearly vertical to improve the detection accuracy. Experiments show that the method of detecting linear defects is resultful. We deem that it is beneficial to control the passport quality and reduce the impact on the follow-up production of passports with this approach.

    参考文献
    相似文献
    引证文献
引用本文

张晓良,闵雄阔,翟广涛,王磊.一种检测护照线性缺陷的方法.计算机系统应用,2018,27(7):243-249

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-11-27
  • 最后修改日期:2017-12-21
  • 录用日期:
  • 在线发布日期: 2018-06-27
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号