一种检测护照线性缺陷的方法
作者:

Approach to Detecting Linear Defects in Passport
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    介绍了一种检测护照质量缺陷的方法.这种护照质量缺陷称为脏版,通常表现为线性,是在护照印刷过程中产生的.这种缺陷会对护照本整体产生较为严重影响.然而检测主要困难在于其蹭脏的颜色和图像背景纹理接近,因此还没有相关的效检测手段.为了这种脏版缺陷我们首先对样本图像进行下采样,并运用多尺度分析的方法来减少背景图案对检测结果的影响,随后采用线段检测分割算法来获得这些线性缺陷.我们在样本图像和模板图像中采用相同的检测方法.随即匹配每个样本中检测到的线段,以去除真正的背景条纹,而剩下未能匹配的线段则被识别为脏版缺陷.我们还使用这些线性缺陷几乎都是垂直的现有知识来提高检测精度.实验表明,这种检测线性缺陷的方法是有效.我们认为,通过这种方法来控制护照质量和减少对后续生产的影响是有非常有帮助的.

    Abstract:

    This paper introduces an approach to detect the quality defects of passports. The scumming defects of the passports are generally linear and produced in the course of passport printing. This phenomenon will have a severe impact on the overall quality of the passport. The chief difficulty to detect above defect is that the color of the scumming is close to the background texture of the image. Consequently, there is no relevant effectively detecting method. In order to detect the scumming defect, we first down-sample the image and analyze the multi-scale for reducing the influence of background pattern, and then employ a line segment detector to get these linear defects. The same line defect detection is conducted in both the samples and the template. We match the detected lines in each sample to eliminate the genuine lines while the non-matched lines are identified as defects. We also use the prior knowledge that linear defects are nearly vertical to improve the detection accuracy. Experiments show that the method of detecting linear defects is resultful. We deem that it is beneficial to control the passport quality and reduce the impact on the follow-up production of passports with this approach.

    参考文献
    [1] 植赐佳. 基于机器视觉的印刷品缺陷自动检测系统[硕士学位论文]. 广州:广东工业大学, 2011.
    [2] Batischev VI, Kuzmin MI, Pischukhin A, et al. System of computer vision for cold-rolled metal quality control. 2016, 9(4):259-263.
    [3] Aimonino DR, Gay P, Comba L. Application of Computer Vision for quality control in frozen mixed berries production:Colour calibration issues. Journal of Agricultural Engineering, 2013, 44(2S):e54.
    [4] Prasetyawan Y, Kurniati N, Ariansyah R. Intelligent inspection system cell design using computer vision system to develop quality control system (Case Study:PT. BERLINA, Tbk.). Proceedings of the 9th Asia Pasific Industrial Engineering & Management Systems Conference. Bali, Indonesia. 2008. 1844-1853.
    [5] 尚会超. 印刷图像在线检测的算法研究与系统实现[博士学位论文]. 武汉:华中科技大学, 2006.
    [6] von Gioi RG, Jakubowicz J, Morel JM, et al. LSD:A line segment detector. Image Processing on Line, 2012, 2(4):35-55.
    [7] von Gioi RG, Jakubowicz J, Morel JM, et al. On straight line segment detection. Journal of Mathematical Imaging and Vision, 2008, 32(3):313-347.[doi:10.1007/s10851-008-0102-5]
    [8] 赵洪亮. 基于Hough变换改进的直线检测与定位. 激光与红外, 2009, 39(9):1009-1011.
    [9] 陈洪波. Hough变换及改进算法与线段检测[硕士学位论文]. 广州:广西师范大学, 2004.
    [10] 朱芳芳, 顾宏斌, 孙瑾. 一种改进的Hough变换直线检测算法. 计算机技术与发展, 2009, 19(5):19-22.
    [11] Brändli C, Strubel J, Keller S, et al. ELiSeD-An event-based line segment detector. Proceedings of the 2nd International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP). Krakow, Poland. 2016. 1-7.
    [12] Schmid C, Zisserman A. Automatic line matching across views. Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition. Washington, DC, USA. 1997. 666.
    [13] Galambos C. Computer vision system:EP, EP1746528.[2007-01-24].
    [14] Baird RK, Turcheck Jr SP, Martin JP. High resolution camera sensor having a linear pixel array:US, US 5157486A.[1992-10-20].
    [15] Cichocki A, Amari SI. Adaptive blind signal and image processing:Learning algorithms and applications. New York:John Wiley & Sons, Inc., 2002.
    [16] Eckstein W, Steger C. The Halcon vision system:An example for flexible software architecture. Proceedings of 3rd Japanese Conference on Practical Applications of Real-Time Image Processing. 1999. 18-23.
    [17] Han BA, Xiang HY, Li Z, et al. Defects detection of sheet metal parts based on HALCON and region morphology. Applied Mechanics and Materials, 2013, 365-366:729-732.
    [18] Xu XB, Zhang XM, Han JQ, et al. HALCON application for shape-based matching. Proceedings of the 3rd IEEE Conference on Industrial Electronics and Applications. Singapore. 2008. 2431-2434.
    [19] Harasimiuk M. Image scaling:US, US 6825857B2.[2004-11-30].
    [20] Zhu SC, Yuille A. Region competition:Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1996, 18(9):884-900.[doi:10.1109/34.537343]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张晓良,闵雄阔,翟广涛,王磊.一种检测护照线性缺陷的方法.计算机系统应用,2018,27(7):243-249

复制
分享
文章指标
  • 点击次数:1884
  • 下载次数: 2238
  • HTML阅读次数: 1347
  • 引用次数: 0
历史
  • 收稿日期:2017-11-27
  • 最后修改日期:2017-12-21
  • 在线发布日期: 2018-06-27
文章二维码
您是第11415290位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号