基于KPCA和投影字典对学习的人脸识别算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61571174);浙江省自然科学基金(LY15F010010)


Face Recognition Algorithm Based on KPCA and Projective Dictionary Pair Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    相比基于稀疏约束的字典学习算法和识别方法,投影字典对学习(projective Dictionary Pair Learning,DPL)具有更快的学习速度和更高的识别率.为了进一步提高DPL的识别能力,本文提出了改进DPL算法K-DPL,即将核主成分分析KPCA与DPL相结合的识别方法.在K-DPL算法中,利用核方法,将样本映射到高维空间以解决非线性问题,再进行DPL训练,得到更具判别性的字典.ORL库上实验表明,不同训练比下K-DPL相比DPL识别率至少提高了1.5%且识别速度提高了约20倍.在扩展YaleB和AR库上,K-DPL相比DPL识别率分别提高0.3%和0.4%,且识别速度有所提高,表明K-DPL对光照和遮挡具有较好的鲁棒性.

    Abstract:

    Compared with the dictionary learning and recognition method based on sparse constraints, the projective Dictionary Pair Learning (DPL) has faster learning speed and a higher recognition rate. In order to further improve the recognition ability of DPL, this study proposes an improved DPL algorithm K-DPL, which combines Kernel Principal Component Analysis (KPCA) and DPL method. In K-DPL, by using the kernel technique, the samples are mapped to high-dimensional space to solve the nonlinear problem, and then DPL is used to get more discriminant dictionary by training the dictionary. Experiments on ORL datasets show that recognition rate is increased by at least 1.5% and the recognition speed is increased by about 20 times compared to DPL at different training ratios by using K-DPL. On the extended YaleB and AR datasets, compared with DPL, the recognition rate is increased by 0.3% and 0.4% respectively, and the recognition speed is improved by using K-DPL as well. It indicates that K-DPL has good robustness to illumination and occlusion.

    参考文献
    相似文献
    引证文献
引用本文

邓道举,李秀梅.基于KPCA和投影字典对学习的人脸识别算法.计算机系统应用,2018,27(5):145-150

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-08-22
  • 最后修改日期:2017-09-12
  • 录用日期:
  • 在线发布日期: 2018-04-23
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号