基于鸟群算法优化BP神经网络的热舒适度预测
作者:

Thermal Comfort Prediction Analysis Based on BP Neural Network Optimized by Bird Swarm Algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    热舒适度是室内环境舒适性的评价指标,由于热舒适度的计算是一个复杂的非线性迭代过程,不便应用于空调实时控制系统中,为解决这一问题,可利用BP神经网络算法对热舒适度进行预测.但为了改善传统BP神经网络收敛速度慢的问题,将采用鸟群算法(BSA)来优化BP神经网络初始的权值与阈值.最后,将BSA算法与相近的粒子群算法(PSO)进行对比分析,并利用MATLAB软件进行仿真,使BSA-BP预测模型的仿真结果与基本的BP神经网络预测模型、PSO-BP预测模型的仿真结果进行对比分析.结果表明,BSA-BP预测模型具有较快的收敛速度和较高的预测精度.

    Abstract:

    Thermal comfort is an evaluation index of indoor environment comfort. Since the calculation of thermal comfort is a complex nonlinear iterative process, it is inconvenient to apply to air conditioning real-time control system. In order to solve this problem, use the BP neural network algorithm to predict thermal comfort. However, in order to improve the slow convergence rate of traditional BP neural network, the bird swarm algorithm (BSA) is used to optimize the initial weights and thresholds of BP neural network. Finally, the BSA algorithm is compared with the similar particle swarm optimization (PSO) algorithm. MATLAB software is used to simulate, and the simulation results of BSA-BP prediction model are compared with the simulation results of the basic BP neural network prediction model and the PSO-BP prediction model. The results show that the BSA-BP algorithm has faster convergence speed and higher prediction accuracy.

    参考文献
    1 段培永, 刘聪聪, 段晨旭, 等. 基于粒子群优化的室内动态热舒适度控制方法. 信息与控制, 2013, 42(1):100-110.
    2 杨昌智, 张清琳, 杨菊菊, 等. 定温控制空调系统的舒适性及节能性分析. 湖南大学学报(自然科学版), 2012, 39(5):18-22.
    3 徐远清, 陈祥光, 王丽, 等. 一种基于模糊因果聚类的室内热舒适预测方法. 仪器仪表学报, 2006, 27(S1):850-852.
    4 徐巍, 陈祥光, 彭红星, 等. 基于模糊C-均值聚类与支持向量机的PMV指标预测系统. 系统工程理论与实践, 2009, 29(7):119-124.[DOI:10.12011/1000-6788(2009)7-119]
    5 Castilla M, Álvarez JD, Ortega MG, et al. Neural network and polynomial approximated thermal comfort models for HVAC systems. Building and Environment, 2013, 59:107-115.[DOI:10.1016/j.buildenv.2012.08.012]
    6 Cao Y, Tian LW, Zhao HW. The application of BP neural net real-time data forecasting model used in home environment. Proceedings of the 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). Shenyang, China. 2015. 1486-1490.
    7 张卉. 基于粒子群优化BP神经网络的房价预测. 价值工程, 2012, 31(14):207-209.[DOI:10.3969/j.issn.1006-4311.2012.14.120]
    8 赵梅香. 基于粒子群和BP神经网络的PMV预测模型在智能办公建筑中应用研究[硕士学位论文]. 广州:华南理工大学, 2012.
    9 沈学利, 张红岩, 张纪锁. 改进粒子群算法对BP神经网络的优化. 计算机系统应用, 2010, 19(2):57-61.
    10 闫婷. 基于蚁群与神经网络算法的变风量空调末端控制研究[硕士学位论文]. 西安:西安建筑科技大学, 2015.
    11 年浩, 顾沈明, 李雪. 基于蚁群优化的BP神经网络对于水质预测的应用. 闽南师范大学学报(自然科学版), 2014, (1):62-67.
    12 李松, 刘力军, 解永乐. 遗传算法优化BP神经网络的短时交通流混沌预测. 控制与决策, 2011, 26(10):1581-1585.
    13 曹勇. 面向室内热湿环境热舒适度预测与控制模型优化研究[硕士学位论文]. 沈阳:沈阳大学, 2016.
    14 樊振宇. BP神经网络模型与学习算法. 软件导刊, 2011, 10(7):66-68.
    15 Meng XB, Gao XZ, Lu LH, et al. A new bio-inspired optimisation algorithm:Bird Swarm Algorithm. Journal of Experimental & Theoretical Artificial Intelligence, 2016, 28(4):673-687.
    16 刘天舒. BP神经网络的改进研究及应用[硕士学位论文]. 哈尔滨:东北农业大学, 2011.
    17 张玲. 空调热舒适度预测及控制算法研究[硕士学位论文]. 长沙:湖南大学, 2014.
    18 刘慧芳. 基于室内热舒适的空调系统测控与节能研究[硕士学位论文]. 重庆:重庆大学, 2009.
    相似文献
    引证文献
引用本文

郭彤颖,陈露.基于鸟群算法优化BP神经网络的热舒适度预测.计算机系统应用,2018,27(4):162-166

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-07-25
  • 最后修改日期:2017-08-09
  • 在线发布日期: 2018-04-03
文章二维码
您是第11418035位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号