基于超球支持向量机的键盘异常检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

浙江省公益技术应用研究项目(2014C31G2060072)


Keyboard Abnormal Detection Based on Hyper-Sphere Support Vector Machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    将改进粒子群算法(IPSO)优化超球支持向量机(HSSVM)应用于键盘的异常检测.首先,在Windows操作系统中,利用开发的钩子(hook)程序,通过系统消息WM_KEYDOWN和WM_KEYUP捕获键盘的击键消息,收集整理需要的按键时间序列作为训练集和测试集;然后,采用HSSVM模型进行样本训练,最终转化为一个二次规划问题,其中利用IPSO对HSSVM模型的惩罚因子和核参数进行寻优;最后,采用测试集对模型检测准确率进行验证,并和优化前结果对比.测试结果表明:IPSO-HSSVM模型应用于键盘的异常检测有效可行,准确率达到90%以上,且比优化前的HSSVM检测效果要好,但要获得更高的检测准确率,还需要进一步提高训练样本的质量和数量.

    Abstract:

    The improved particle swarm optimization (IPSO) optimized hyper-sphere support vector machine (HSSVM) can be used for abnormal detection of keyboard in this paper. Firstly, the development of the hook (hook) procedure in the Windows operating system is used to collect the required key time series as a training set and test set through the system messages WM_KEYDOWN and WM_KEYUP capture keyboard keystroke messages. Then, the HSSVM model is used to carry out sample training and finally transformed into a quadratic programming problem. The IPSO is used to optimize the penalty factor and kernel parameters of HSSVM model. Finally, the test set is used to verify the accuracy of the model detection and is compared with the results before optimization. The test results show that the IPSO-HSSVM model is effective for the detection of the keyboard and the accuracy rate is over 90%, which is better than that of the HSSVM before optimization. However, it is necessary to further improve the quality and quantity of the training samples in order to obtain higher detection accuracy.

    参考文献
    相似文献
    引证文献
引用本文

赵峰,铁治欣,谢磊.基于超球支持向量机的键盘异常检测.计算机系统应用,2018,27(4):231-236

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-07-23
  • 最后修改日期:2017-08-09
  • 录用日期:
  • 在线发布日期: 2018-04-03
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号