基于窗口Hough变换与阈值分割的矩形识别算法
作者:
基金项目:

广东省高校重大科研项目-特色创新项目(自然科学)(2016KTSCX167);广东省自然科学基金(2016A030313384);海南省自然科学基金(20156227)


Rectangle Detection Algorithm Based on Windowed Hough Transform and Threshold Segmentation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出一种基于窗口霍夫变换与阈值分割自动识别图像中的矩形策略: 通过图像窗口霍夫变换,提取霍夫图像的峰值(对应原始图像的线段),当四个峰值满足某些几何条件时,则检测出矩形;对图像进行阈值分割,将分割结果与霍夫变换的矩形做拟合修正.对不同成像背景和光照环境下图像的集成测试结果表明,本策略能够很好地抑制在多种自然光照不均和拍摄角度造成的干扰.且采用了缩略图计算,降低了逐像素运算的时间复杂度,可满足实时性要求.该技术可运用在实时准确裁剪银行票据目标等各个需要快速识别矩形的工程领域.

    Abstract:

    This study proposes a method for automatic recognition and cutting of bank bills using windowed Hough transform: by scanning each pixel to compute the Hough transform of the image and extract the peaks of the Hough transform (which correspond to line segments). A rectangle is detected when four extracted peaks satisfy certain geometric conditions (which correspond the border of bills). Threshold is used to segment the source image and perform fitting correction for the segment result and the extracted Hough transform rectangles. The integration test results of on different image backgrounds and illumination environment indicate that the proposed strategy has a good ability to suppress the interference caused by different natural illumination and shooting angles. In addition, thumbnails view is used to extract feature, reducing the time complexity of pixel-by-pixel operation.

    参考文献
    [1] Lagunovsky D, Ablameyko S. Straight-line-based primitive extraction in grey-scale object recognition. Pattern Recognition Letters, 1999, 20(10): 1005-1014. [DOI:10.1016/S0167-8655(99)00067-7]
    [2] Lin CG, Nevatia R. Building detection and description from a single intensity image. Computer Vision and Image Understanding, 1998, 72(2): 101-121. [DOI:10.1006/cviu.1998.0724]
    [3] Jung CR, Schramm R. Rectangle detection based on a windowed Hough transform. Proceedings of the 17th Brazilian Symposium on Computer Graphics and Image Processing. Curitiba, Brazil. 2004. 113-120.
    [4] Jundale TA, Hegadi RS. Skew detection and correction of Devanagari script using Hough transform. Procedia Computer Science, 2015, 45: 305-311. [DOI:10.1016/j.procs.2015.03.147]
    [5] Illingworth J, Kittler J. A survey of the Hough transform. Computer Vision, Graphics, and Image Processing, 1988, 43(2): 280.
    [6] Leavers VF. Survey: Which Hough transform? CVGIP: Image Understanding, 1993, 58(2): 250-264. [DOI:10.1006/ciun.1993.1041]
    [7] Furukawa Y, Shinagawa Y. Accurate and robust line segment extraction by analyzing distribution around peaks in Hough space. Computer Vision and Image Understanding, 2003, 92(1): 1-25. [DOI:10.1016/j.cviu.2003.07.002]
    [8] 李牧, 闫继红, 李戈, 等. 自适应Canny算子边缘检测技术. 哈尔滨工程大学学报, 2007, 28(9): 1002-1007.
    [9] 韩思奇, 王蕾. 图像分割的阈值法综述. 系统工程与电子技术, 2002, 24(6): 91-94, 102.
    [10] 刘欣欣, 李雪, 王琼. 基于灰度直方图的多阈值分割法. 计算机应用与软件, 2013, 30(12): 28-30, 63. [DOI:10.3969/j.issn.1000-386x.2013.12.008]
    [11] 陈果, 左洪福. 图像阈值分割的两种新技术. 模式识别与人工智能, 2002, 15(4): 468-473.
    [12] Princen J, Illingworth J, Kittler J. A formal definition of the Hough Transform: Properties and relationships. Journal of Mathematical Imaging and Vision, 1992, 1(2): 153-168. [DOI:10.1007/BF00122210]
    [13] Duda RO, Hart PE. Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM, 1972, 15(1): 11-15. [DOI:10.1145/361237.361242]
    [14] Boukharouba A. A new algorithm for skew correction and baseline detection based on the randomized Hough Transform. Journal of King Saud University—Computer and Information Sciences, 2017, 29(1): 29-38. [DOI:10.1016/j.jksuci.2016.02.002]
    [15] 贺辉, 刘琨, 肖红玉. 银行票据自动裁剪方案设计与控件开发. 计算机与数字工程, 2016, 45(7): 1327-1332.
    [16] 陈强, 朱立新, 夏德深. 结合Canny算子的图像二值化. 计算机辅助设计与图形学学报, 2005, 17(6): 1302-1306.
    [17] Shafii M, Sid-Ahmed M. Skew detection and correction based on an axes-parallel bounding box. International Journal on Document Analysis and Recognition, 2015, 18(1): 59-71. [DOI:10.1007/s10032-014-0230-y]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

贺辉,闫明,黄静.基于窗口Hough变换与阈值分割的矩形识别算法.计算机系统应用,2018,27(3):131-135

复制
分享
文章指标
  • 点击次数:2171
  • 下载次数: 4032
  • HTML阅读次数: 2345
  • 引用次数: 0
历史
  • 收稿日期:2017-06-12
  • 最后修改日期:2017-06-27
  • 在线发布日期: 2018-02-11
文章二维码
您是第12460468位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号