基于红外和可见光融合的目标跟踪
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省工业科技攻关计划项目(2016GY-032);西安工业大学校长基金(XAGDXJJ15014)


Target Tracking Based on Infrared and Visible Light Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对单一图像源下目标跟踪精度不高和当目标存在部分遮挡时目标跟踪丢失的问题,本文提出了一种结合红外图像和可见光图像特征进行融合的方法. 首先在进行目标跟踪时,提取可见光图像的颜色信息作为目标模型的参数,提取红外图像的灰度信息作为目标模型的参数,并分别得到目标位置及其子图. 然后再利用目标子图和目标模型分别进行Bhattacharyya系数的计算,根据权值函数来计算各自系数的权值,最后用Mean Shift算法对加权后的目标进行跟踪. 该方法充分利用了红外图像与可见光图像的优点,提高了目标跟踪的精度,解决了当目标存在部分遮挡时目标跟踪丢失的问题.

    Abstract:

    In the process of target tracking, the accuracy of tracker for single image source is not high enough and the target would be inclined to be lost when covered partially. A method of fusing the features of infrared image and visible light image is proposed in this study. First, the color information of the visible light image is extracted as a parameter in the target model, and the gray level information of the infrared image is taken as the other parameter. According to the two parameters, the target positions and its subgraphs can be acquired respectively. Then the corresponding Bhattacharyya coefficients are calculated by the anterior target subgraphs and the target models. The weights of the respective coefficients can be calculated on the basis of the weighting function. Finally, the target that is weighted with the Mean Shift algorithm could be tracked. This method makes full use of the advantages of infrared images and visible light images, improves the accuracy of tracker, and has solved the problem that the target is likely to be lost when partially covered.

    参考文献
    相似文献
    引证文献
引用本文

王凯,韦宏利,陈超波,曹凯.基于红外和可见光融合的目标跟踪.计算机系统应用,2018,27(1):149-153

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-04-14
  • 最后修改日期:2017-06-08
  • 录用日期:
  • 在线发布日期: 2017-12-22
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号