基于回归树和AdaBoost方法的刀具磨损评估
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

沈阳市2014年科学计划项目(F14-056-7-00)


Tool Wear Evaluation Based on Decision Tree Regression and AdaBoost Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文利用高速数控铣刀铣削中不同侧面方向的切削力和振动信号以及声发射信号均方根值,以数据驱动的形式对刀具磨损进行了拟合评估. 在本次研究中,分别从时域、频域和时频联合域上探索与刀具磨损相关的敏感特征,具体特征提取方法包括时域统计分析、频域上的快速傅里叶变换(FFT)和时频联合分析的小波变换(WT). 本文中,决策树被用于回归问题而非分类问题,用于评估刀具磨损值. 同时,引入AdaBoost算法对回归树模型进行提升,并从模型的准确性、稳定性和适用性三个方面上综合对比了提升的决策树回归模型和原模型的性能. 研究表明,AdaBoost算法提升的回归决策树模型在预测的准确性和稳定性上都有一定程度上提高,并且在面向全新刀具磨损预测的适用性上也取得了不错的提升效果.

    Abstract:

    In this paper, the cutting force and vibration signals in different axial directions and the RMS of the acoustic emission signal in the milling of the high speed CNC cutters are fully utilized to evaluate the tool wear in the data-driven method. In this study, the sensitive features related to tool wear are explored from three aspects: time-domain, frequency-domain and joint time-frequency domain, and the feature extraction methods include time-domain statistical analysis, fast Fourier transform (FFT) between time-domain and frequency-domain, and wavelet transform (WT) in time-frequency domain. In this paper, the decision tree will be used for regression problems, rather than classification issues, to assess the tool wear value. And then, the AdaBoost algorithm is introduced to improve the performance of the decision tree regression (DTR), and the performance of the adaptive boosted decision tree regression (DTR-Ada) model and the original model are compared at the aspects of the accuracy, steadiness and applicability. The result shows the DTR-Ada model can improve the accuracy and stability of the fitting and prediction, and it also achieves a good effect on the applicability of the new tool wears prediction.

    参考文献
    相似文献
    引证文献
引用本文

陶耀东,曾广圣,李宁.基于回归树和AdaBoost方法的刀具磨损评估.计算机系统应用,2017,26(12):212-219

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-03-20
  • 最后修改日期:2017-04-10
  • 录用日期:
  • 在线发布日期: 2017-12-07
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号