基于Spark的实时视频分析系统
作者:
基金项目:

国家科技支撑计划(2013BAH09F01);临港地区智能制造产业专项(ZN2016020103)


Scalable Real-Time Video Analysis System Based on Spark
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [11]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    视频监控技术在交通管理、公共安全、智慧城市等方面有着广泛的应用前景,且向着智能识别、实时处理、大数据分析的方向发展. 本文针对大规模实时视频监控提出了新的解决方案. 基于Spark streaming流式计算、分布式存储及OLAP框架,使多路视频处理在可扩展性、容错性及数据多维聚合分析上具有明显的优势. 系统根据视频处理算法划分为单机处理与分布式处理. 并将视频图像处理与数据分析耦合,利用Kafka消息队列与Spark streaming完成对多路视频输出数据的进一步操作. 结合分布式存储方案,并利用OLAP框架实现对海量数据实时多维聚合分析与高效实时查询.

    Abstract:

    The video surveillance technology has a wide application prospect in traffic management, public safety, intelligent city, and is developing towards intelligent recognition, real-time processing, and large data analysis. In this paper, we propose a new system for large-scale real-time video surveillance. The system is based on Spark streaming, distributed storage and OLAP framework so that multi-channel video processing has obvious advantages in scalability, fault tolerance and data analysis of the multi-dimensional polymer. According to video processing algorithm, the processing module is divided into single machine processing and distributed processing. The video processing is separated from the data analysis, and the further operation of the multi-channel video output data is completed by using Kafka message queue and Spark streaming. Combining the distributed storage technology with OLAP framework, the system achieves real-time multi-dimensional data analysis and high-performance real-time query.

    参考文献
    [1] 黄凯奇, 陈晓棠, 康运锋, 等. 智能视频监控技术综述. 计算机学报, 2015, 38(6): 1093-1118. [DOI:10.11897/SP.J.1016.2015.01093]
    [2] Natarajan VA, Jothilakshmi S, Gudivada VN. Scalable traffic video analytics using hadoop mapreduce. The First International Conference on Big Data, Small Data, Linked Data and Open Data. Barcelona, Spain. 2015. 11-15.
    [3] Apache Software Foundation. Kylin: Extreme OLAP engine for big data. http://kylin.apache.org/.
    [4] 黄文辉, 冯瑞. 基于Spark Streaming的视频/图像流处理与新的性能评估方法. 计算机工程与科学, 2015, 37(11): 2055-2060. [DOI:10.3969/j.issn.1007-130X.2015.11.010]
    [5] Apache Software Foundation. Apache spark, lightning-fast cluster computing. http://spark.apache.org.
    [6] Apache Software Foundation. Kafka: A distributed streaming platform. https://kafka.apache.org.
    [7] Apache Software Foundation. HBase: A distributed, scalable, big data store. https://hbase.apache.org.
    [8] Apache Software Foundation. HDFS: A distributed, scalable File System. https://hadoop.apache.org.
    [9] Apache Software Foundation. Apache Kylin: Extreme OLAP engine for big data. http://kylin.apache.org.
    [10] Zaharia M, Chowdhury M, Das T, et al. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. 9th USENIX Conference on Networked Systems Design and Implementation. San Jose, CA, USA. 2012.
    [11] Apache Software Foundation. Spark streaming + Kafka integration guide. http://spark.apache.org/docs/latest/streaming-kafka-integration.html.
    相似文献
    引证文献
引用本文

郑健,冯瑞.基于Spark的实时视频分析系统.计算机系统应用,2017,26(12):51-57

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-03-20
  • 在线发布日期: 2017-12-07
文章二维码
您是第11325681位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号