基于文本的抑郁情感倾向识别模型
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

上海海事大学研究生创新基金(2016ycx036)


Depression Tendency Identification Model Based on Text Content Analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对学生在新浪微博文本中所表现出来的抑郁情感倾向,提出了一种识别抑郁情感倾向的模型. 通过在本校广泛发动学生在线填写抑郁自评量表,获得学生的量表得分. 采集学生的微博文本,并请本校心理学老师对微博进行人工标注. 在预处理阶段,利用抑郁情感词典重新组合在分词阶段被拆分的抑郁情感词,以提高识别正确率. 然后基于支持向量机构建一个情感分类器对微博数据进行训练,经过不断的学习反馈,获得较好的分类效果;最后,定义了抑郁指数来衡量个体在一段时间内的抑郁倾向程度. 实验结果表明,抑郁指数衡量的抑郁程度大致与量表结果吻合,该方法识别准确率达到82.35%.

    Abstract:

    In order to solve the problem of identifying depression tendency among students on sina microblog platform, this paper proposes a depression tendency identification model. By inviting students widely to fill in the self-rating depression scale online on campus we can get the students' score. We collect students' microblog text and ask the psychology teacher to annotate the microblog artificially. In the pretreatment stage, we use the depression emotional dictionary to reassemble the depressed emotion words that are split at the segmentation stage so as to improve the recognition accuracy rate. And then we build a classifier based on the support vector machine to train the data. Through continuous learning and feedback, we get a better classification result. Finally, this paper defines the depression index and uses it to measure the degree of depression for a period of time. The experimental results indicate that the degree of depression measured by depression index is approximately consistent with the results of the scale, the accuracy of the method being 82.35%.

    参考文献
    相似文献
    引证文献
引用本文

施志伟,高俊波,胡雯雯,刘志远.基于文本的抑郁情感倾向识别模型.计算机系统应用,2017,26(12):155-159

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-03-09
  • 最后修改日期:2017-03-27
  • 录用日期:
  • 在线发布日期: 2017-12-07
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号