大规模隐式反馈的词向量音乐推荐模型
作者:

Implicit Music Recommender Based on Large Scale Word-Embedding
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [13]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    现有音乐推荐系统在大规模隐式反馈场景下存在推荐困难的问题,提出大规模隐式反馈的词向量音乐推荐模型(Word-Embedding Based Implicit Music Recommender).本模型借鉴了自然语言处理领域的Word2Vec技术,通过学习用户音乐收藏播放记录里的歌曲共现信息,获得用户、音乐在分布式空间的低维、紧致的向量表示,从而得到用户、音乐之间的相似度进行推荐,并且在理论上论述了Word2Vec技术应用在推荐系统上的正确性.该模型在保证准确率和召回率几乎不变的同时,收敛速度快,占用内存小,试验结果表明该模型有效的解决了大规模隐性反馈场景下音乐推荐困难的问题.

    Abstract:

    A large scale word-embedding based implicit music recommender is proposed to address the problems that most of current recommendation systems cannot work in the scenario of large scale implicit feedback recommendation. This model employs the Word2Vec technique which is popular in Natural Language Processing in recent years. By learning the songs co-occurrences in the users' history collections, we can get the distributed representation of users and songs with a low-dimension and dense vector. In this way, we can get the similarities of users and songs which could be used for the recommendation and we also analyze the correctness of application of Word2Vec technique in recommendation. This model can effectively solve the problem mentioned above with the accuracy remaining the same. In addition, this model can converge faster and take less memory than those of traditional methods.

    参考文献
    [1] 印鉴, 王智圣, 李琪, 等. 基于大规模隐式反馈的个性推荐. 软件学报, 2014, 25(9):1953-1966.
    [2] Hu YF, Koren Y, Volinsky C. Collaborative filtering for implicit feedback datasets. Proc. of the 8th IEEE International Conference on Data Mining. Pisa, Italy. 2008. 263-272.
    [3] 彭飞, 邓浩江, 刘磊. 加入用户评分偏置的推荐系统排名模型. 西安交通大学学报, 2012, 46(6):77-78, 86.
    [4] Herlocker JL, Konstan JA, Borchers A, et al. An algorithmic framework for performing collaborative filtering. Proc. of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Berkeley, California, USA. 1999. 230-237.
    [5] Linden G, Smith B, York J. Amazon.com recommendations:Item-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1):76-80.[DOI:10.1109/MIC.2003.1167344]
    [6] Sarwar B, Karypis G, Konstan J, et al. Item-based collabo-rative filtering recommendation algorithms. Proc. of the 10th International Conference on World Wide Web. Hong Kong, China. 2001. 285-295.
    [7] Salakhutdinov R, Mnih A. Probabilistic matrix factorization. Proc. of the 20th International Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada. 2007. 1257-1264.
    [8] Le Q, Mikolov T. Distributed representations of sentences and documents. Proc. of the 31st International Conference on Machine Learning. Beijing, China. 2014. 1188-1196.
    [9] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space. arXiv:1301.3781, 2013.
    [10] Lee DD, Seung HS. Algorithms for Non-negative Matrix Factorization. Proc. 13th International Conference on Neural Information Proc. Systems. Cambridge, MA, USA. 2000. 556-562.
    [11] Van den Oord A, Dieleman S, Schrauwen B. Deep content-based music recommendation. Proc. 26th International Conference on Neural Information Proc. Systems. Lake Tahoe, NV, USA. 2013. 2643-2651.
    [12] Wang H, Wang NY, Yeung DY. Collaborative deep learning for recommender systems. Proc. of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney, NSW, Australia. 2015. 1235-1244.
    [13] 来斯惟. 基于神经网络的词和文档语义向量表示方法研究[博士学位论文]. 北京:中国科学院大学, 2016.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

于帅,林宣雄,邱媛媛.大规模隐式反馈的词向量音乐推荐模型.计算机系统应用,2017,26(11):28-35

复制
分享
文章指标
  • 点击次数:1801
  • 下载次数: 2562
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2017-02-20
  • 最后修改日期:2017-03-09
  • 在线发布日期: 2017-10-30
文章二维码
您是第11418545位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号