BP神经网络误差修正的电力物资时间序列预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Time Series Prediction of Power Supplies Based on BP Neural Network Error Correction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统的ARIMA时间序列分析方法是基于线性技术来进行时序预测,而对非线性数据的处理不尽合理,效果欠佳;而影响电力物资需求的因素非常多,绝大多数的物资序列通常既包含了线性时序的部分,又包含了非线性时序的成分.本文提出在ARIMA对电力物资需求预测的基础上,融合BP神经网络进行误差修正,以全面提取物资序列中的复合特征,提高电力物资的预测精度.实验结果表明,误差修正后的电力物资预测精度有了显著提高,可以为制定物资采购计划提供重要的数据支持.

    Abstract:

    The traditional ARIMA time series analysis method is based on the linear technology to predict the time series, while its processing of nonlinear data is not reasonable with poor effect. There are many factors influencing the demand of power supply, and most of the material sequences usually contain both the linear time series and the nonlinear time series. In this paper, based on the ARIMA forecast, the BP neural network is combined with error correction to extract the composite features in the material sequence in order to improve the forecast precision of the electric power materials. The experimental results show that the accuracy of power supply forecasting with error correction can be improved significantly, which can provide important data support for material procurement plan.

    参考文献
    相似文献
    引证文献
引用本文

赵一鹏,丁云峰,姚恺丰. BP神经网络误差修正的电力物资时间序列预测.计算机系统应用,2017,26(10):196-200

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-01-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-10-31
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号