基于非负性约束K-SVD的fMRI盲源信号分离
作者:
基金项目:

国家自然科学基金(31470954)


FMRI Blind Source Separation Based on Non-Negative Constraint K-SVD
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    近年来,K-SVD算法在功能磁共振成像(functional magnetic resonance imaging,fMRI)数据分析方法的研究中越来越受到关注.在本文中,提出了一种新的基于非负性约束K-SVD (Non-negative K-SVD,NK-SVD)的盲源信号分离(Blind Source Separation,BSS)方法.首先,随机初始化字典矩阵,利用正交匹配追踪算法(Orthogonal Matching Pursuit,OMP)求得稀疏向量矩阵;然后利用NK-SVD迭代更新字典矩阵和稀疏向量矩阵;进一步,对字典矩阵求伪逆,乘以原始信号数据,可得到脑功能激活区;最后,将本文的方法应用于模拟数据和真实数据,结果证明了方法的有效性,并且比传统算法有更好的效果.

    Abstract:

    In recent years, the K-SVD algorithm has gained more and more attention in the studies of functional magnetic resonance imaging (fMRI) data analysis. In this research, we propose a new method of blind source separation based on non-negative constrained K-SVD (NK-SVD). Firstly, we initialize a dictionary matrix randomly, and use orthogonal matching pursuit (OMP) to obtain a sparse vector matrix. Then, we use NK-SVD to update the dictionary matrix and sparse vector matrix. Furthermore, we solve the dictionary matrix pseudo inverse to obtain the brain functional activation areas by multiplying by the original data. Finally, we apply the proposed method to both simulated data and real fMRI data, where the correspondingly experimental results demonstrate the effectiveness of the proposed one, having better performance in comparison with the conventional algorithms.

    参考文献
    1 Hyvärinen A, Karhunen J, Oja E. Independent component analysis. Chichester:Wiley, 2001.
    2 公昱文, 张桂芸, 马洪芝. ICA算法在fMRI中的应用. 计算机工程与科学, 2008, 30(10):37-39.
    3 潘丽丽, 史振威, 唐焕文, 等. fMRI信号盲分离的一种独立成分分析算法. 大连理工大学学报, 2005, 45(4):607-611.
    4 杜宇慧, 桂志国, 刘迎军, 等. 基于独立成分分析的脑功能网络分析方法综述. 生物物理学报, 2013, 29(4):266-275.
    5 Hyvärinen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural Computation, 1997, 9(7):1483-1492.[DOI:10.1162/neco.1997.9.7.1483]
    6 Valente G, De Martino F, Filosa G, et al. Optimizing ICA in fMRI using information on spatial regularities of the sources. Magnetic Resonance Imaging, 2009, 27(8):1110-1119.[DOI:10.1016/j.mri.2009.05.036]
    7 Wang NZ, Zeng WM, Chen L. SACICA:A sparse approximation coefficient-based ICA model for functional magnetic resonance imaging data analysis. Journal of Neuroscience Methods, 2013, 216(1):49-61.[DOI:10.1016/j.jneumeth.2013.03.014]
    8 Ferdowsi S, Abolghasemi V, Sanei S. A constrained NMF algorithm for bold detection in fMRI. IEEE International Workshop on Machine Learning for Signal Proc. Kittila, Finland. 2010. 77-82.
    9 Lee K, Tak S, Ye JC. A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion. IEEE Trans. on Medical Imaging, 2011, 30(5):1076-1089.[DOI:10.1109/TMI.2010.2097275]
    10 Calhoun VD, Potluru VK, Phlypo R, et al. Independent component analysis for brain fMRI does indeed select for maximal independence. PLoS One, 2012, 8(8):e73309.
    11 Wang XX, Tian J, Li XF, et al. Detecting brain activations by constrained non-negative matrix factorization from task-related BOLD fMRI. Proc. of SPIE 5369, Medical Imaging 2004:Physiology, Function, and Structure from Medical Images. San Diego, USA. 2004. 675-682.
    12 Aharon M, Elad M, Bruckstein A. rmK-SVD:An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. on Signal Processing, 2006, 54(11):4311-4322.[DOI:10.1109/TSP.2006.881199]
    13 Khalid MU, Seghouane AK. A single SVD sparse dictionary learning algorithm for FMRI data analysis. 2014 IEEE Workshop on Statistical Signal Proc. Gold Coast, Australia. 2014. 65-68.
    14 蒋行国, 覃阳, 韦保林. 基于改进K-SVD的磁共振图像去噪算法. 科技导报, 2014, 32(8):64-69.
    15 Abolghasemi V, Ferdowsi S, Sanei S. Fast and incoherent dictionary learning algorithms with application to fMRI. Signal, Image and Video Proc., 2015, 9(1):147-158.[DOI:10.1007/s11760-013-0429-2]
    16 Wang NZ, Zeng WM, Chen D. A novel sparse dictionary learning separation (SDLS) model with adaptive dictionary mutual incoherence constraint for fMRI data analysis. IEEE Trans. on Biomedical Engineering, 2016, 63(11):2376-2389.[DOI:10.1109/TBME.2016.2533722]
    17 Seghouane AK, Khalid MU. Learning dictionaries from correlated data:Application to fMRI data analysis. IEEE International Conference on Image Proc. Phoenix, USA. 2016. 2340-2344.
    18 Tropp J, Gilbert AC. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. on Information Theory, 2007, 53(12):4655-4666.[DOI:10.1109/TIT.2007.909108]
    19 Lee DD, Seung HS. Algorithms for non-negative matrix factorization. Advances in Neural Information Processing Systems 13. Denver, CO, USA. 2000. 556-562.
    20 Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature, 1999, 401(6755):788-791.[DOI:10.1038/44565]
    21 Minka TP. Automatic choice of dimensionality for PCA. Advances in Neural Information Processing Systems 13. Denver, CO, USA. 2000. 598-604.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱凌晨,曾卫明,石玉虎.基于非负性约束K-SVD的fMRI盲源信号分离.计算机系统应用,2017,26(8):114-120

复制
分享
文章指标
  • 点击次数:1923
  • 下载次数: 2353
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2016-12-13
  • 在线发布日期: 2017-10-31
文章二维码
您是第11205190位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号