基于用户信任和兴趣的概率矩阵分解推荐方法
作者:
基金项目:

江苏省高校哲学社会科学基金(2015SJD039);中央高校基本科研业务费专项资金(NS2016078)


Recommended Algorithm Based on User Trust and Interest with Probability Matrix Factorization
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    传统协同过滤推荐算法存在数据稀疏性、冷启动、新用户等问题.随着社交网络和电子商务的迅猛发展,利用用户间的信任关系和用户兴趣提供个性化推荐成为研究的热点.本文提出一种结合用户信任和兴趣的概率矩阵分解(STUIPMF)推荐方法.该方法首先从用户评分角度挖掘用户间的隐性信任关系和潜在兴趣标签,然后利用概率矩阵分解模型对用户评分信息、用户信任关系、用户兴趣标签信息进行矩阵分解,进一步挖掘用户潜在特征,缓解数据稀疏性.在Epinions数据集上进行实验验证,结果表明,该方法能够在一定程度上提高推荐精度,缓解冷启动和新用户问题,同时具有较好的可扩展性.

    Abstract:

    The traditional collaborative filtering recommendation algorithm has such problems as data sparseness, cold-start and new users. With the rapid development of social network and e-commerce, how to provide personalized recommendations based on the trust between users and user interest tag is becoming a hot research topic. In this study, we propose a probability matrix factorization model (STUIPMF) by integrating social trust and user interest. First, we excavate implicit trust relationship between users and potential interest label from the perspective of user rating. Then we use the probability matrix factorization model to conduct matrix decomposition of user ratings information, users trust relationship, user interest label information, and further excavate the user characteristics to ease data sparseness. Finally, we make experiments based on the Epinions dataset to verify the proposed method. The results show that the proposed method can to some extent improve the recommendation accuracy, ease cold-start and new user problems. Meanwhile, the proposed STUIPMF approach also has good scalability.

    参考文献
    [1] Borchers A, Herlocker J, Konstan J, et al. Ganging up on information overload. Computer, 1998, 31(4):106-108.[DOI:10.1109/2.666847]
    [2] Linden G, Smith B, York J. Amazon.com recommendations:Item-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1):76-80.[DOI:10.1109/MIC.2003.1167344]
    [3] Vozalis E, Margaritis KG. Analysis of recommender systems' algorithms.Proc. of the the 6th Hellenic-European Con- ference on Computer Mathematics and its Applications. Athens, Greece. 2003. 732-745.
    [4] 中国互联网络信息中心. 第38次《中国互联网络发展状况统计报告》. 北京:中国互联网络信息中心, 2016.
    [5] Bobadilla J, Ortega F, Hernando A, et al. Recommender systems survey. Knowledge-Based Systems, 2013, 46:109-132.[DOI:10.1016/j.knosys.2013.03.012]
    [6] Guo GB. Integrating trust and similarity to ameliorate the data sparsity and cold start for recommender systems. Proc. of the 7th ACM Conference on Recommender Systems. Hong Kong, China. 2013. 451-454.
    [7] 王国霞, 刘贺平. 个性化推荐系统综述. 计算机工程与应用, 2012, 48(7):66-76.
    [8] 张学钱, 林世平, 郭昆. 协同过滤推荐算法对比分析与优化应用. 计算机系统应用, 2015, 24(5):100-105.
    [9] Sun XH, Kong FS, Ye S. A comparison of several algorithms for collaborative filtering in startup stage. Proc. of 2005 IEEE Networking, Sensing and Control. Tucson, AZ, USA. 2005. 25-28.
    [10] Massa P, Avesani P. Trust-aware recommender systems. Proc. of the 2007 ACM Conference on Recommender Systems. Minneapolis, MN, USA. 2007. 17-24.
    [11] Golbeck J. Personalizing applications through integration of inferred trust values in semantic web-based social networks. Proc. of Semantic Network Analysis Workshop. Galway, Ireland. 2005.
    [12] Jamali M, Ester M. TrustWalker:A random walk model for combining trust-based and item-based recommendation. Proc. of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France. 2009. 397-406.
    [13] 杨秀梅, 孙咏, 王丹妮, 等. 融合用户信任模型的协同过滤推荐算法. 计算机系统应用, 2016, 25(7):165-170.[DOI:10.15888/j.cnki.csa.005229]
    [14] Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks. Proc. of the 4th ACM Conference on Recommender Systems. Barcelona, Spain. 2010. 135-142.
    [15] Ma H, Yang HX, Lyu MR, et al. SoRec:Social recommendation using probabilistic matrix factorization. Proc. of the 17th ACM Conference on Information and Knowledge Management. Napa Valley, California, USA. 2008. 931-940.
    [16] Salakhutdinov BR, Mnih A. Probabilistic matrix factorization. Proc. of the 20th International Conference on Neural Information Processing Systems. 2015. 1257-1264.
    [17] Koenigstein N, Paquet U. Xbox movies recommendations:Variational bayes matrix factorization with embedded feature selection. Proc. of the 7th ACM Conference on Recommender Systems. Hong Kong, China. 2013. 129-136.
    [18] 姚平平, 邹东升, 牛宝君. 基于用户偏好和项目属性的协同过滤推荐算法. 计算机系统应用, 2015, 24(7):15-21.
    [19] Lee WP, Ma CY. Enhancing collaborative recommendation performance by combining user preference and trust-distrust propagation in social networks. Knowledge-Based Systems, 2016, (106):125-134.[DOI:10.1016/j.knosys.2016.05.037]
    [20] 陶俊, 张宁. 基于用户兴趣分类的协同过滤推荐算法. 计算机系统应用, 2011, 20(5):55-59.
    [21] 嵇晓声, 刘宴兵, 罗来明. 协同过滤中基于用户兴趣度的相似性度量方法. 计算机应用, 2010, 30(10):2618-2620.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

彭鹏,米传民,肖琳.基于用户信任和兴趣的概率矩阵分解推荐方法.计算机系统应用,2017,26(9):1-9

复制
分享
文章指标
  • 点击次数:1396
  • 下载次数: 2186
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2016-12-23
  • 在线发布日期: 2017-10-31
文章二维码
您是第11348777位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号