基于Spark和Redis的大规模RDF数据查询系统
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Big RDF Graph Query System Based on Spark and Redis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着语义Web技术的不断发展,RDF数据量增长迅速,单机RDF查询系统已经难以满足现实需要,研究和构建分布式RDF查询系统已经成为学术界与工业界的研究热点之一.现有的RDF查询系统主要是基于Hadoop或通用分布式技术.前者磁盘I/O太高;后者则可扩展性较差.且两种系统在基本图模式查询时,效率都较低.针对上述问题,本文设计了基于Spark和Redis的分布式系统架构,并改进了查询计划生成算法,最后实现了原型系统RDF-SR.该系统使用Spark减少了磁盘I/O,借助Redis提高了数据映射速率,利用改进的算法减少了数据混洗次数.实验表明,相比于现有的其他系统,RDF-SR既保持了较高可扩展性,又在基本图模式查询时,具有更高的性能.

    Abstract:

    With the development of semantic web technology, RDF data grow rapidly. The single node RDF query system cannot meet the practical needs. Building distributed RDF query system has become one of the hotspots in the academia and industry. The existing RDF query system is based on Hadoop and general distributed technology. The disk I/O of the former is too high and the latter is less scalable. Besides, the two systems perform poorly in the basic pattern matching mode. In order to solve these problems, we design a distributed system architecture based on Spark and Redis, and improve the query plan generation algorithm. We call the prototype system RDF-SR. This system reduces the disk I/O by Spark, improves the data mapping rate by Redis and reduces the data shuffling process with improved algorithms. Our evaluation shows that RDF-SR performs better in the basic pattern matching mode compared with other systems.

    参考文献
    相似文献
    引证文献
引用本文

阳杰,王木涵,徐九韵.基于Spark和Redis的大规模RDF数据查询系统.计算机系统应用,2017,26(9):69-74

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-12-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-10-31
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号