基于运动矢量的人群异常事件实时检测
作者:
基金项目:

中科院先导项目课题(XDA06011203)


Real-Time Detection of Abnormal Event Based on Motion Vector
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    近年来,城市公共安全形势严峻,给社会经济的可持续发展提出新的问题.因而,如何有效地监测突发人群异常状况,已成为目前的一个研究热点问题.由于人群运动目标众多且在不断变化,所以很难通过运动目标的跟踪来研究人群异常.研究表明:当人群出现异常时,最明显的变化就是人群的运动速度的大小和运动方向会突然发生变化,比如,由静止或慢速行走变为快速奔跑、突然改变前进的方向等,相应的,视频帧的运动矢量也会发生同样的变化,由此,提出基于运动矢量的人群异常快速检测算法.实验结果表明,本文提出的算法能够实时、有效的检测出人群运动的异常.

    Abstract:

    In recent years, the urban public security poses a new problem to the sustainable development of social economy. Therefore, how to effectively monitor the abnormal situation of the crowd has become a hot issue. Due to the large number of moving targets and the changing of the crowd, it is difficult to study the abnormalities of the crowd by tracking the moving objects. The study shows that when the crowd is abnormal, the most obvious change is the movement speed of the crowd and the direction of the movement will suddenly change. For example, from static state or slow walking to fast running, and the sudden change of the motion direction. The corresponding motion vector of the video frame will undergo the same change. Thus, we propose the fast detection algorithm for the crowd based on motion vector. The experimental results show that the algorithm proposed can detect the abnormal movement of human beings in real time and effectively.

    参考文献
    1 Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. The Journal of Machine Learning Research, 2003, 3:993-1022.
    2 Eddy SR. Hidden Markov models. Current Opinion in Structural Biology, 1996, 6(3):361-365.[DOI:10.1016/S0959-440X(96)80056-X]
    3 Cortes C, Vapnik V. Support-vector networks. Machine Learning, 1995, 20(3):273-297.
    4 Haykin S. Neural networks:A comprehensive foundation. Englewood Cliffs:Prentice Hall PTR, 1994.
    5 Mehran R, Oyama A, Shah M. Abnormal crowd behavior detection using social force model. Proc. of IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA. 2009. 935-942.
    6 王玉新, 刘冀伟, 李擎. H.264视频码流中运动物体的提取. 微计算机信息, 2006, 22(8S):183-185.
    7 邹铮, 闫玮, 谢剑斌, 等. 基于运动矢量的异常拥挤行为检测算法. 数学技术与应用, 2016, (5):120-122.
    8 University of Minnesota. Unusual crowd activity dataset of University of Minnesota. http://mha.cs,umn.edn/movies/crowdactivity-all.avi.[2015-07-11].
    9 Cong Y, Yuan JS, Liu J. Sparse reconstruction cost for abnormal event detection. Proc. of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA. 2011. 3449-3456.
    10 Wu SD, Moore BE, Shah M. Chaotic invariants of Lagrangian particle trajectories for anomaly detection in crowded scenes. Proc. of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA. 2010. 2054-2060.
    11 Wu S, Wong HS, Yu ZW. A Bayesian model for crowd escape behavior detection. IEEE Trans. Circuits and Systems for Video Technology, 2014, 24(1):85-98.[DOI:10.1109/TCSVT.2013.2276151]
    12 Mahadevan V, Li WX, Bhalodia V, et al. Anomaly detection in crowded scenes.Proc. of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA. 2010. 1975-1981.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张伟峰,周智,赵斌,黄露,朱明.基于运动矢量的人群异常事件实时检测.计算机系统应用,2017,26(8):227-231

复制
分享
文章指标
  • 点击次数:1777
  • 下载次数: 2046
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2016-12-13
  • 在线发布日期: 2017-10-31
文章二维码
您是第11325681位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号