基于隐马尔可夫模型的移动终端定位算法
作者:
基金项目:

青岛市黄岛科技计划项目(2014-1-45)


Positioning Algorithm of Mobile Terminal Based on Hidden Markov Models
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    移动互联网技术的快速发展,对移动终端定位方法提出了新的要求.针对传统方法在功耗、精度、通用性方面往往不能兼顾的问题,在充分挖掘个人行为习惯的基础上,提出了一种基于隐马尔可夫模型的定位算法.该算法根据地图信息对基站覆盖区域进行路段划分,通过记录个人的行走轨迹,利用其统计规律来辅助建立GSM信号的隐马尔可夫模型,通过测量基站的信号强度序列,完成对当前位置给出较为精确的估计.实验结果表明该算法在保证低功耗的同时有效提高了定位精度.

    Abstract:

    With the rapid development of mobile internet technology, new requirements have been set for the mobile terminal positioning method. In view of the problem that we cannot take into account of energy consumption, accuracy and versatility, we propose a Hidden Markov Model-based and personal habits-based network location algorithm. The algorithm divides the roads into sections in the area covered by the base stations according to the map, and records the personal walking trajectory, which helps build the hidden markov model of GSM signals with the statistical law. Thus, with only a station’s signal sequence, we can get an accurate estimate of the user’s current position. Experiments show that the algorithm can guarantee a good positioning accuracy with lower energy consumption.

    参考文献
    1 罗军舟, 吴文甲, 杨明. 移动互联网:终端、网络与服务. 计算机学报, 2011, 34(11):2029-2051.
    2 周傲英, 杨彬, 金澈清, 等. 基于位置的服务:架构与进展. 计算机学报, 2011, 34(7):1155-1171.
    3 Xue MH, Liu Y, Ross KW, et al. I know where you are:Thwarting privacy protection in location-based social discovery services. Proc. of 2015 IEEE Conference on Computer Communications Workshops. Hong Kong, China. 2015. 179-184.
    4 Lin K, Kansal A, Lymberopoulos D, et al. Energy-accuracy trade-off for continuous mobile devices location. Proc. of the 8th International Conference on Mobile Systems, Applications, and Services. New York, USA. 2010. 285-298.
    5 Paek J, Kim J, Govindan R. Energy-efficient rate-adaptive GPS-based positioning for smartphones. Proc. of the 8th International Conference on Mobile Systems, Applications, and Services. New York, USA. 2010. 219-324.
    6 Youssef M, Yosef MA, El-Derini M. GAC:Energy-efficient hybrid GPS-accelerometer-compass GSM localization. Proc. of 2010 IEEE Global Telecommunications Conference. Miami, FL, USA. 2010. 1-5.
    7 Wann CD, Chin HC. Hybrid TOA/RSSI wireless location with unconstrained nonlinear optimization for indoor UWB channels. Proc. of 2007 IEEE Wireless Communications and Networking Conference. Kowloon, China. 2007. 3940-3945.
    8 Vankayalapati N, Kay S, Ding Q. TDOA based direct positioning maximum likelihood estimator and the cramer-rao bound. IEEE Trans. Aerospace and Electronic Systems, 2014, 50(3):1616-1635.[DOI:10.1109/TAES.2013.110499]
    9 Elnahrawy E, Francisco JA, Martin RP. Bayesian localization in wireless networks using angle of arrival. Proc. of the 3rd International Conference on Embedded Networked Sensor Systems. New York, USA. 2005. 272-273.
    10 Paek J, Kim KH, Singh JP, et al. Energy-efficient positioning for smartphones using cell-id sequence matching. Proc. 9th International Conference on Mobile Systems, Applications, and Services. New York, USA. 2011. 293-306.
    11 Chen MY, Sohn T, Chmelev D, et al. Practical metropolitan-scale positioning for gsm phones. International Conference on Ubiquitous Computing. Berlin Heidelberg, Germany. 2006. 225-242.
    12 Ibrahim M, Youssef M. CellSense:An accurate energy-efficient GSM positioning system. IEEE Trans. Vehicular Technology, 2012, 61(1):286-296.[DOI:10.1109/TVT.2011.2173771]
    13 Ibrahim M, Youssef M. A hidden markov model for localization using low-end gsm cell phones. Proc. of 2011 IEEE International Conference on Communications. Kyoto, Japan. 2011. 1-5.
    14 竹博, 王建辉, 胡捍英, 等. 基于隐马尔可夫模型的Cell-ID定位跟踪方法. 太赫兹科学与电子信息学报, 2013, 11(4):561-566.
    15 Nicoli M, Morelli C, Rampa V, et al. HMM-based tracking of moving terminals in dense multipath indoor environments. Proc. of the 13th European Signal Processing Conference. Antalya, Turkey. 2005. 1-4.
    16 Viol N, Link JAB, Wirtz H, et al. Hidden markov model-based 3D path-matching using raytracing-generated Wi-Fi models. Proc. of 2012 International Conference on Indoor Positioning and Indoor Navigation. Sydney, NSW, Australia. 2012. 1-10.
    17 González MC, Hidalgo CA, Barabási AL. Understanding individual human mobility patterns. Nature, 2008, 453(7196):779-782.[DOI:10.1038/nature06958]
    18 Simini F, González MC, Maritan A, et al. A universal model for mobility and migration patterns. Nature, 2012, 484(7392):96-100.[DOI:10.1038/nature10856]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

路锦博,蔡丽萍,孙宗星.基于隐马尔可夫模型的移动终端定位算法.计算机系统应用,2017,26(8):195-200

复制
分享
文章指标
  • 点击次数:1275
  • 下载次数: 2848
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2016-12-08
  • 在线发布日期: 2017-10-31
文章二维码
您是第11418234位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号