电网供电系统短期电力负荷预测优化仿真
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

甘肃省自然基金(1308RJZA117)


Grid Power System Short-Term Load Forecasting Simulation Optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对电网供电系统短期电力负荷预测模型进行优化,能提升预测结果的准确性和鲁棒性.虽然现有预测模型可以满足预测速度的要求,但预测结果的精确性和稳定性却无法保证.为了得到更加准确和稳定的预测结果,提出了细菌觅食算法优化极限学习机预测模型.首先在电力负荷样本数据中形成训练样本和预测样本集,利用细菌觅食优化算法对极限学习机预测模型中的不确定参数进行优化,然后利用改进后的模型进行电力负荷预测.新模型的优化仿真结果显示,利用细菌觅食算法优化极限学习机预测模型的预测精度和稳定性均优于传统预测模型的预测结果,该算法具有很好地实用性.

    Abstract:

    The optimization of short-term load forecasting simulation for the Grid power system can improve prediction accuracy and robustness of the results. Although the existing prediction models can meet the requirements of prediction speed, the accuracy and stability of the predicted results are always difficult to guarantee. In order to get more accurate and stable forecast results, this paper puts forward the bacterial foraging algorithm to optimize the new predicting model of the extreme learning machine. First, the training sample and forecast sample set are formed in the power load sampling data set. The bacteria foraging optimization algorithm is used to optimize the uncertain parameters in the prediction model of extreme learning machine algorithm. Then, the improved model for power load forecasting is used. Through the optimization of the new model simulation, the results show that the use of bacterial foraging algorithm optimization model to predict extreme learning machine precision and stability are superior to the traditional forecasting model prediction results, and the algorithm has good practicability.

    参考文献
    相似文献
    引证文献
引用本文

王惠中,杨世亮,卢玉飞.电网供电系统短期电力负荷预测优化仿真.计算机系统应用,2017,26(8):147-151

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-08-17
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-10-31
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号