学生消费行为的聚类分析优化研究和应用
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

校前期资助课题(XJAU201426);自治区自然科学基金(2014211B023)


Research and Application of Clustering Analysis Optimization for Students' Consumer Behaviors
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于现有的数据挖掘技术,采用优化初始聚类中心的方法来改进k-means聚类算法,对新疆农业大学学生一卡通消费数据进行研究和分析,为相关部门提供决策支持.首先,根据需求分析,选取部分学生于2014-2015学年在一卡通系统中产生的真实数据作为分析数据,并进行数据预处理,同时选择食堂消费次数和金额、超市消费次数和金额、就餐场所为特征属性;其次,使用改进的聚类算法进行分析,并且对比分析了基于三种距离度量方式下的k-means聚类算法;然后,得出分析结论,学生的食堂消费行为和超市消费行为;最后,探讨了如何根据分析所得结论为学校提供决策支持.

    Abstract:

    Based on the existing data mining technology,this article adopts the method of optimizing the initial clustering center to improve the k-means clustering algorithm, we can study of Xinjiang agricultural University student id card consumption data for the research and analysis,and provide decision support for the related departments.First of all, according to the demand analysis, we will choose some students for school year 2014-2015 real data in one cartoon system as data analysis,and data preprocessing, at the same time, we will choose the dining room number and amount, the supermarket consumption number and amount, the dining place for experimental characteristic attributes;Secondly, we use the improved clustering algorithm to analyze the data, and comparative analysis based on three kinds of distance measure under the k-means clustering algorithm;Then, the analysis conclusion, the student canteen consumption behavior and supermarket consumption behavior;Finally,the study was based on the conclusions of analysis provides decision support for schools.

    参考文献
    相似文献
    引证文献
引用本文

游香薷,王业,杨抒,王斌,赵新苗,姚海伦.学生消费行为的聚类分析优化研究和应用.计算机系统应用,2017,26(6):232-237

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-09-09
  • 最后修改日期:2016-11-03
  • 录用日期:
  • 在线发布日期: 2017-06-08
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号