基于模糊时序和支持向量机的高速公路SO2浓度预测算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山西省交通厅科技项目(2015-1-25);山西省基础研究项目(2015021126)


Prediction for SO2 Concentration Based on the Fuzzy Time Series and Support Vector Machine (SVM) on Expressway
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有SO2浓度预测方法中存在的污染物来源和影响因素认识不统一、小样本数据敏感、易于陷入局部最优等问题,文中提出了基于模糊时序和支持向量机的高速公路SO2浓度预测算法,为搭建高速公路环境健康监测系统提供了可靠的理论支持.该方法依据SO2浓度的季节变动规律,以季节作为时间序列,以24h为粒化窗宽,通过高斯核函数提取原始样本数据的特征值,输入支持向量机训练模型,并利用k重交叉验证法结合网格划分优化模型参数.文中应用该方法建立了SO2浓度预测模型,并以2014年4月至2015年3月山西省太旧高速公路某监测点SO2小时浓度监测值为样本数据,在MATLAB平台下应用LIBSVM工具实现了计算过程.结果表明,基于模糊时序和支持向量机的高速公路SO2浓度预测算法不受机理性理论研究的限制,支持小样本学习,非线性拟合效果好,泛化能力强.

    Abstract:

    The present prediction methods for SO2 concentration suffer from the disadvantages that there is no uniform understanding of pollutant sources and influencing factors, small sample data is sensitive, and prediction methods are easy to fall into local optimum etc. In order to solve these problems, a method for the prediction of SO2 concentrations on expressway is proposed which is based on fuzzy time series and support vector machine (SVM), and provides a reliable theoretical support for building the highway environmental health monitoring system. Based on the seasonal variation of SO2 concentrations, the method takes the season as time series, 24h for graining window width. Through the Gaussian kernel function to extract the eigenvalues of the original sample data, which are input support vector machine (SVM) model for training, and k-fold cross validation method combined with the grid division is used to optimize model parameters. Finally, a SO2 concentrations prediction model is established with the method in this paper. By using 1h average SO2 concentrations as sample data which are obtained by Shanxi taijiu expressway monitoring station from April 2014 to March 2014, the LIBSVM tool is used to realize the calculation process on the MATLAB platform. The results show that based on fuzzy time series and support vector machine (SVM), the forecasting methods of SO2 concentration is not restricted by the research of machine rational theory, and supports small-sample learning, otherwise, the nonlinear fitting effect is perfect, and the ability of generalization is well.

    参考文献
    相似文献
    引证文献
引用本文

岳鹏程,张林梁,马阅军.基于模糊时序和支持向量机的高速公路SO2浓度预测算法.计算机系统应用,2017,26(6):1-8

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-09-29
  • 最后修改日期:2016-10-31
  • 录用日期:
  • 在线发布日期: 2017-06-08
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号