非平稳时序数据的分段辨识及其递推算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省科技计划工业攻关项目(2011B010200031);佛山职业技术学院校级重点科研项目(2015KY006)


Segmented Identification and Recursive Algorithm for Non-Stationary Time Series Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在实际生活中,广泛地存在着一类在整体上属于非平稳但又可转化为数段局部平稳的时序数据,对该类非平稳时序数据的辨识问题进行了研究,并提出了一种具有递推机制的分段辨识算法.该算法从平稳时序数据的定义出发,以均值、方差及自相关函数等数字统计特征为校验统计量,构造了具有递推机制的均值突变点、方差突变点及自相关函数突变点的析出算法,在此基础上,从被辨识的非平稳序列中划分出数段局部平稳的子序列,进一步,应用Burg算法对各局部平稳子序列进行了自回归的递推辨识.实验表明,新设计的算法能以较小的位置偏差析出各局部平稳子序列的分界点,同时,在保证较高精度的辨识条件下,计算效能获得了显著的提升.

    Abstract:

    In fact, there widely exists a kind of time series data that is non-stationary but can be transformed into several local stationary time series data, the identification problem of the non-stationary time series data is studied, and then this paper proposes a piecewise recursive identification algorithm with mechanism. Based on the definition of stationary time series data, the precipitation algorithm which has the mean variance point, the mutation point and the mutation point of the autocorrelation function, is constructed based on the statistical characteristics such as the mean and variance and autocorrelation function. On this basis, a series of locally stationary sub sequences are identified from the identified non-stationary sequences, and then, the Burg algorithm is applied to the recursive identification of local stationary subsequences. The experimental results show that the new algorithm can divide the boundary points of the local stationary sub sequences with smaller position deviation. At the same time, the calculation efficiency is improved significantly under the condition of high accuracy.

    参考文献
    相似文献
    引证文献
引用本文

黄雄波.非平稳时序数据的分段辨识及其递推算法.计算机系统应用,2017,26(5):180-185

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-08-14
  • 最后修改日期:2016-10-19
  • 录用日期:
  • 在线发布日期: 2017-05-13
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号