基于改进混合高斯模型的运动目标检测方法
作者:

Improved Moving Object Detection Method Based on Gaussian Mixture Model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对传统高斯模型易将背景显露区域检测为前景问题与对复杂场景下噪音处理效果差的缺陷,提出了一种混合了三帧差算法的改进混合高斯模型算法. 利用三帧差算法快速确定背景显露区域与前景的优势,提高了算法对背景显露区域的适应性;提出一种背景模式邻域更新法,提高了对复杂背景噪音的抗干扰性. 通过实验证明,该算法与传统方法相比,在复杂背景下减少了大量噪音,学习周期短,提高了对天气、摄像头震动等干扰的抗性,优化了背景显露引起的“影子”噪音问题.

    Abstract:

    For the traditional Gaussian mixture model, it is prone to detect the background as the foreground region and has poor effect in complex background, so this paper puts forward an improved algorithm combined with three frame difference method. First, we use the three frame difference method to improve adaptation of the revealed background region. Second, we use the means of background neighborhoods update to improve the resistance to complex background noise. The experiments prove that compared with the traditional method, the improved algorithm reduces large amount of noise and shortens learning cycle, and improves resistance to the weather and camera shake, optimizing the noise caused by background region revealed.

    参考文献
    1 Wu JR, Du XL, Liu HT. An improved adaptive background modeling algorithm based on Kalman filter. Transducer & Micro System Technologies, 2012.
    2 Kirch W, Spahn H, Ohnhaus EE, et al. An approach to motion vehicle detection in complex factors over highway surveillance video. 2009 International Joint Conference on Computational Sciences and Optimization. IEEE Computer Society. 2009. 520-523.
    3 Li GM, Li Y, Xiao WM. A background modeling algorithm based on pixel frequency. Asia-Pacific Youth Conference on Communication Technology. 2010.
    4 Zhan C, Duan X, Xu S, et al. An improved moving object detection algorithm based on frame difference and edge detection. International Conference on Image and Graphics. 2007. 519-523.
    5 Chen C, Zhang X. Moving vehicle detection based on union of three-frame difference. Advancesin Electronic Engineering, Communication and Management, 2012, (2): 459-464.
    6 Migliore DA, Matteucci M, Naccari M. A revaluation of frame difference in fast and robust motiondetection. Polymer International, 2006, 51(2): 105-110.
    7 Zhang L, Shao Z, Wu JD, et al. A moving object detection method based on improved three-frame difference algorithm and edge information. International Conference on Advances in Mechanical Engineering and Industrial Informatics. Atlantis Press. 2015.
    8 李广,冯燕.基于SIFT特征匹配与K-均值聚类的运动目标检测.计算机应用,2012,32(10):2824-2826.
    9 Bhattacharyya S, Maulik U, Dutta P. High-speed target tracking by fuzzy hostility-induced segmentation of optical flow field. Applied Soft Computing, 2009, 9(1): 126-134.
    10 Baby RM, Ahamed RR. Optical flow motion detection on raspberry pi. Fourth International Conference on Advances in Computing and Communications. 2014.
    11 林洪文,涂丹,李国辉.基于统计背景模型的运动目标检测方法.计算机工程,2003,29(16):97-99.
    12 Stauffer C, Grimson WEL. Adaptive Background Mixture Models for Real-Time Tracking. IEEE Conference on Computer Vision and Pattern Recognition, IEEE Computer Society. 1999. 2246.
    13 刘静.混合高斯模型背景法的一种改进算法.计算机工程与应用,2010,46(13):168-170.
    14 张燕平,白云球,赵勇,等.应用改进混合高斯模型的运动目标检测.计算机工程与应用,2010,46(34):155-157.
    15 Migliore DA, Matteucci M, Naccari M. A revaluation of frame difference in fast and robust motiondetection. Polymer International, 2006, 51(2): 105-110.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张国平,高兆彬.基于改进混合高斯模型的运动目标检测方法.计算机系统应用,2017,26(4):130-134

复制
分享
文章指标
  • 点击次数:1206
  • 下载次数: 2208
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2016-07-12
  • 最后修改日期:2016-08-08
  • 在线发布日期: 2017-04-11
文章二维码
您是第12472747位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号