基于无迹卡尔曼滤波器的改进SLAM问题求解方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Improved Solution Based on Unscented Kalman Filter in the SLAM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前在即时定位与地图构建(Simultaneous Localization And Mapping,SLAM)的研究中已经使用局部取样策略来降低无迹卡尔曼滤波(Unscented Kalman Filter,UKF)的计算复杂度至状态向量维数的平方等级.但是在大规模的SLAM中平方复杂度仍然难以满足实时性需求.为了解决这个问题,提出了一种收缩无迹卡尔曼滤波器(Shrink Unscented Kalman Filter,S-UKF),并应用于SLAM问题中.首先证明了解耦非线性系统中的部分取样策略和全取样策略的等价性.然后提出了一个通过重构公式中相关项的收缩方式来降低计算复杂度.最后,仿真实验的结果和基于真实环境数据集的实验结果证明了该方法的有效性.

    Abstract:

    A partial sampling strategy was recently proposed to make the computational complexity of the unscented Kalman filter (UKF) quadratic with the state-vector dimension. However, the quadratic complexity remains a thorny issue in the large SLAM. To solve this problem, this paper presents a filtering solution for the SLAM problem called shrink unscented Kalman filter (S-UKF). It firstly proves that equivalence of the whole and partial sampling strategy for the decoupled nonlinear systems. Then a shrink form is presented by reconstruction the cross-correlation items to reduce the computational complexity. Finally, the simulation results and experimental results based on real environmental data sets validate the effectiveness of this method.

    参考文献
    相似文献
    引证文献
引用本文

吴勇,关胜晓.基于无迹卡尔曼滤波器的改进SLAM问题求解方法.计算机系统应用,2017,26(3):30-36

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-06-18
  • 最后修改日期:2016-08-08
  • 录用日期:
  • 在线发布日期: 2017-03-11
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号