基于低秩矩阵分解的运动目标检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

湖南省自然科学基金(14JJ6014)


Moving Objects Detection Based on Low-Rank Matrix Decomposition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    运动目标检测是视频监控任务的基础问题之一,针对灰度信息,目标检测存在的阴影识别能力差、检测精度低等问题,提出在HSV颜色空间下基于低秩矩阵分解的运动目标检测算法.首先将获取的RGB图像转为HSV颜色空间分量,分别对H、S、V通道构建低秩观测量,进行低秩矩阵优化分解,分离出不同颜色通道的前景和背景分量;组合H、S、V通道分量的前景图像,得到粗略的运动目标区域;再采用HSV颜色阴影去除去除前景图像中的阴影;最后经噪声去除和空洞的填充,检测得到准确的前景运动目标.实验验证表明,与其它方法相比,能够有效地提高运动目标检测的准确度.

    Abstract:

    Moving objects detection is one of fundamental tasks of video surveillance.Specific to the poor identification capability and low accuracy to shadow in gray information,this paper proposes a novel moving objects detection method based on the combination of Low-Rank Matrix decomposition and HSV color information.Firstly,we convert the images from RGB space to HSV space,construct observation matrix for H,S,V channels,respectively,and optimize the observation matrix through Low-Rank Matrix decomposition to obtain H,S,V channel's foreground component and background component;combing H,S,V channels foreground component in order to get roughly moving object district.Secondly,the moving shadow should be detected and eliminated from the foreground image,after combining H,S,V channels component to get the row processing foreground objects and the column processing foreground objects,the row processing foreground image and the column processing foreground image are combined to obtain the moving objects image.Finally,by morphological processing and connectivity detection to eliminate the noise,the accurate foreground moving objects can be obtained.The experimental results demonstrate that the proposed method is much better than others in increasing accuracy of moving objects detection.

    参考文献
    相似文献
    引证文献
引用本文

黄霞,许海霞,莫言.基于低秩矩阵分解的运动目标检测.计算机系统应用,2016,25(12):227-233

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-03-23
  • 最后修改日期:2016-05-16
  • 录用日期:
  • 在线发布日期: 2016-12-14
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号