柔性车间调度的解空间距离聚类和变邻域搜索粒子群算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Solution Space Distance Clustering-Variable Neighborhood Search Particle Swarm Optimization for Flexible Job Shop Scheduling Problem
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    根据柔性车间调度问题提出基于解空间距离聚类和变邻域搜索的粒子群算法.在粒子群算法基础上采用贪婪策略引入变邻域搜索方式,即调整关键路径上最大关键工序的机器位置,调整关键路径上工序相对位置变化,加强局部搜索能力;根据机器加工工序的空间距离,采用K-means聚类得到机器加工工序“优良个体”,加大局部搜索性能.同时对于粒子群算法速度更新采用局部停滞策略,保留局部片段相对位置不变特性.通过实验仿真,优化算法取得了较好的效果,与一般的粒子群算法相比较收敛速度迅速且性能良好.

    Abstract:

    Based on the Flexible Job-Shop Scheduling Problem (FJSP),an improved particle swarm optimization algorithm is proposed,which is based on solution space distance clustering and variable neighborhood search.In this algorithm,a better solution to the problem is that the greedy strategy is adopted to introduce a variable neighborhood search method,adjusting machine location of the biggest key processes on the critical path,adjusting the relative position changes which is on the critical path.According to the space distance of the machining process,the K-means clustering is used to get the "excellent individuals" of machine processing,increasing the local search performance.At the same time,the speed of the particle swarm optimization is updated with the local self-adaptive stagnation strategy,and the relative position of the local segment could be kept unchanged.Through the experimental simulation,the optimization algorithm achieves good effectiveness,and the convergence speed is rapider and the performance is better compared with the general PSO algorithm.

    参考文献
    相似文献
    引证文献
引用本文

杜兆龙,徐玉斌,崔志华,李建伟,赵俊忠.柔性车间调度的解空间距离聚类和变邻域搜索粒子群算法.计算机系统应用,2016,25(12):143-148

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-03-14
  • 最后修改日期:2016-04-29
  • 录用日期:
  • 在线发布日期: 2016-12-14
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号