IDEA:一种基于P2P借贷网络的投资决策分析算法
作者:
基金项目:

国家自然科学基金(91546105,71331005,7150316)


IDEA: An Investment Decision Analysis Algorithm for P2P Lending
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献 [5]
  • | | |
  • 文章评论
    摘要:

    互联网金融P2P借贷平台上存在着较大的贷款投资风险,为协助投资人获得更佳的贷款收益,本文综合考虑贷款坏账风险、流标风险、利率和投资人风险偏好等要素,提出投资决策算法IDEA(Investment DEcision Analysis):构建投资人-贷款网络,充分利用网络中的贷款投资行为信息来度量贷款坏账风险,利用图半监督学习方法度量贷款流标风险,为投资决策提供依据. 在真实数据集上的实验结果表明,相对于现有算法,我们的算法不仅可以取得更佳的投资收益,而且能够协助具有不同风险偏好的投资人进行投资决策.

    Abstract:

    There has been high risk on internet financial P2P lending platform. In order to assist investors to obtain a better loan proceeds, this paper comprehensively takes the risk of bad debts, failure of bidding, interest rate and investor risk preferences and other factors into consideration, and proposes the investment decision-making algorithm IDEA (investment Decision Analysis): building the investor-loan network, taking advantage of investment behavior of loan information in the network to measure the risk of bad debts and make use of the graph based semi-supervised learning method to metric the risk of failed bidding to provide the basis for investment decisions. Experiment results on real datasets show that, compared with existing algorithms, our algorithm can not only get a better return on investment, but also assist investors with different risk appetite to make investment decisions.

    参考文献
    1 Zhao H, Wu L, Liu Q, et al. Investment recommendation in P2P lending: A portfolio perspective with risk management. IEEE International Conference on Data Mining. IEEE. 2014. 1109-1114.
    2 Wang X, Zhang D, Zeng X, et al. A Bayesian investment model for online P2P lending. Frontiers in Internet Technologies. Springer Berlin Heidelberg, 2013: 21-30.
    3 Dong G, Lai KK, Yen J. Credit scorecard based on logistic regression with random coefficients. Procedia Computer Science, 2010, 1(1): 2463-2468.
    4 Guo Y, Zhou W, Luo C, et al. Instance-based credit risk assessment for investment decisions in P2P lending. European Journal of Operational Research, 2015.
    5 Luo C, Xiong H, Zhou W, et al. Enhancing investment decisions in P2P lending: an investor composition perspective. Proc. of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. 2011. 292-300.
    6 Li Y, Rakesh V, Reddy CK. Project success prediction in crowdfunding environments. WSDM, 2016.
    7 Ceyhan S, Shi X, Leskovec J. Dynamics of bidding in a P2P lending service: Effects of herding and predicting loan success. Proc. of the 20th International Conference on World Wide Web. ACM. 2011. 547-556.
    8 Sonenshein S, Herzenstein M, Dholakia UM. How accounts shape lending decisions through fostering perceived trustworthiness. Organizational Behavior & Human Decision Processes, 2011, 115(1): 69-84.
    9 Li S, Qiu J, Lin Z, et al. Do borrowers make homogeneous decisions in online P2P lending market? An empirical study of PPDai in China. 2011 8th International Conference on Service Systems and Service Management (ICSSSM). IEEE. 2011. 1-6.
    10 Liu ZM. An Analysis of the lending behavior in P2P network credit-based on the dual persuasion model. Finance Forum, 2014.
    11 Jebara T, Wang J, Chang SF. Graph construction and b -matching for semi-supervised learning. International Conference on Machine Learning. ACM. 2009. 441-448.
    12 Su X. Collaborative filtering: A survey. 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions). IEEE. 2015.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周雅慧,张一舟,米晋宏. IDEA:一种基于P2P借贷网络的投资决策分析算法.计算机系统应用,2016,25(9):200-206

复制
分享
文章指标
  • 点击次数:1385
  • 下载次数: 3156
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2016-03-01
  • 最后修改日期:2016-03-28
  • 在线发布日期: 2016-09-14
文章二维码
您是第11343175位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号