基于JADE的自动聚类算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Automatic Clustering Based on JADE Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    JADE算法是传统差分进化算法(DE)的一种改进算法,其收敛速度更快、优化性能更好,拥有一套完整的自适应参数调整机制有效加强了算法的全局搜索优化能力. 本文将自适应差分进化算法(JADE)用于聚类,提出了一个新的基于JADE的自动聚类算法(AC-JADE). 首先,本文采用双交叉策略,在传统的两点式交叉操作之后,针对DE用于自动聚类时的特定的编码方式,添加了一种基于个体间聚类中心随机交换交叉策略;其次,针对聚类中心选取方法的随机性导致的聚类中心有可能偏离数据集或者聚类中心过于集中的缺陷做出了相关改进,通过先对聚类中心进行筛选在进行聚类,有效避免了因算法本身的随机性导致的错误聚类划分. 通过对UCI的4个数据集的仿真实验比较,该种双交叉操作的聚类算法明显好于同类算法.

    Abstract:

    JADE algorithm is an improved algorithm of basic differential evolution algorithm (DE) with better convergence speed and optimization performance, whose self-adaptive parameter adjustment mechanism improves its global optimization ability. In this paper, we use self-adaptive differential evolution algorithm (JADE) for clustering and propose a new automatic clustering algorithm based on JADE,named as AC-JADE. Firstly, it takes double crossover strategy for clustering. Specifying to the encoding mode of DE used for clustering, it adds a new crossover strategy after the conventional two point crossover operation. This new crossover strategy acts directly on two clustering centers derived from parent vector and trial vector separately. Secondly, it makes improvements on the drawbacks that the selected clustering centers may deviate from the data set or they are too close results from the randomness of mode for choosing clustering center. Sifting clustering centers before choosing some of them for clustering results has a better effect. The experimental results carried on 4 UCI datasets verifies effectiveness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

唐亚,王振友.基于JADE的自动聚类算法.计算机系统应用,2016,25(9):183-187

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-01-11
  • 最后修改日期:2016-03-14
  • 录用日期:
  • 在线发布日期: 2016-09-14
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号