人群异常识别技术研究进展
作者:
基金项目:

国家自然科学基金(61079022);四川省科技基金(2015JY0188);民航局科技创新基金(20150215);民航飞行学院科研基金(J2012-43)


Research Progress on the Crowd Abnormal Recognition Technology
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    人群行为分析是计算机视觉领域最活跃的研究方向之一. 有许多针对人群异常行为及检测的算法如人群密度估计、人群中运动检测、人群跟踪和群体行为识别. 在对目前人群异常行为进行总结分析,并概括出人群异常的三大关键特征. 并在次基础上,分别针对人群特征提取、异常识别技术、异常分类技术以及人群异常识别数据库方面,对人群异常识别技术现状进行总结概括,并并对存在的问题,以及未来发展方向提出了研究的建议和意见. 文章对相关领域的研究具有一定的参考价值.

    Abstract:

    Crowd analysis becomes the most active-oriented research and trendy topic in computer vision nowadays. Within the crowd, there exist many behavior anomalies or abnormalities. There are many ways of detecting these abnormalities such as crowd density estimation, crowd motion detection, crowd tracking and crowd behavior recognition. The abnormal behaviors of crowd are analyzed, and the three key features of abnormal crowd are summarized. The feature extraction, anomaly identification technology, anomalies classification and databases of the crowd are respectively summarized, and the current problems, as well as the suggestions and comments about the future direction of research are then proposed. Article has a certain reference value for the research in related fields.

    参考文献
    1 唐迅.基于稀疏编码的群体异常行为检测[硕士学位论文]. 哈尔滨:哈尔滨工业大学,2013.
    2 彭怀亮.视频监控场景中人群异常行为识别研究[硕士学位论文].杭州:中国计量学院,2014.
    3 林沁.视频中的大规模人群密度与异常行为分析[硕士学位论文].厦门:厦门大学,2014.
    4 徐姗.基于视频分析的异常群体事件检测[硕士学位论文].武汉:华中科技大学,2011.
    5 曹书凯.人群运动的流体表达及异常行为检测[硕士学位论文].秦皇岛:燕山大学,2012.
    6 柴斌.突发人群聚集事件智能视频监控[硕士学位论文].成都:电子科技大学,2010.
    7 闫志扬.视频监控中人群状态分析及异常事件检测方法研究[硕士学位论文].天津:天津大学,2013.
    8 杨琳,苗振江.一种人群异常行为检测系统的设计与实现. 铁路计算机应用,2010,19(7):37-41.
    9 宋开勇.基于脉线的群体分割与异常行为检测[硕士学位论文].青岛:青岛科技大学,2013.
    10 Andrade EL, Blunsden S, Fisher RB. Hidden Markov models for optical flow analysis in crowds. The 18th International Conference on Pattern Recognition. Hong Kong, China. IEEE Computer Society. 2006. 460-463 .
    11 Ma R, Li LY, Huang WM, Tian Q. On pixel count based crowd density estimation for visual surveillance. IEEE Conference on in Cybernetics and Intelligent Systems. Singapore. IEEE SMC. 2004. 170-173.
    12 Gyu-Jin K, Eom KY, Kim MH, Tk A. Automated measurement of crowd density based on edge detection and optical flow. 2nd International Conference on Industrial Mechatronics and Automation. Wuhan: Curran Associates, Inc. 2010. 553-556.
    13 Xinyu W, Liang GY, Lee KK, Xu YS. Crowd density estimation using texture analysis and learning. IEEE International Conference on Robotics and Biomimetics. Kunming. Institute of Electrical and Electronics Engineers. 2006. 214-219.
    14 Kilambi P, Masoud O, Papanikolopoulos N. Crowd analysis at mass transit sites. Intelligent Transportation Systems Conference. Toronto. Curran Associates, Inc. 2006. 753-758.
    15 Elgammal A, Elgammal A, Duraiswami R, Larrys D. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of the IEEE, 2002, 90(7): 1151-1163 .
    16 Khansari M, Rabiee HR, Asadi M, Mohammed G. Crowded scene object tracking in presence of Gaussian White noise using undecimated wavelet features. 9th International Symposium on Signal Processing and its Applications. Sharjah: Curran Associates, Inc. 2007. 1-4.
    17 Oliver NM, Rosario B, Pentland AP. A Bayesian computer vision system for modeling human interactions. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000, 22(8): 831-843.
    18 Ge W, Collins RT, Ruback B. Automatically detecting the small group structure of a crowd. Workshop in Applications of Computer Vision. Snowbird, Utah: Curran Associates, Inc. 2009. 1-8.
    19 Mehran R, Oyama A, Shah M. Abnormal crowd behavior detection using social force model. IEEE Conference on Computer Vision and Pattern Recognition. Miami. Curran Associates, Inc. 2009. 935-942.
    20 Benabbas Y, Ihaddadene N, Djeraba C. Motion pattern extraction and event detection for automatic visual surveillance. Journal on Image and Video Processing, 2011, (7): 1-15.
    21 Wu S, Wong HS, Yu Z. A bayesian model for crowd escape behavior detection. IEEE Trans. on Circuits and Systems for Video Technology, 2014, 24(1): 85-98.
    22 Jacques J, Braun A, Soldera J, Musse SR, Jung CR. Understanding people motion in video sequences using Voronoi diagrams. Pattern Analysis and Applications, 2007, 10(4): 321-332.
    23 Cheriyadat AM, Radke RJ. Detecting Dominant Motions in Dense Crowds. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(4): 568-581.
    24 Li W, Mahadevan V, Vasconcelos N. Anomaly detection and localization in crowded scenes. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2013, 36: 18-32.
    25 Thida M, Eng HL, Remagnino P. Laplacian eigenmap with temporal constraints for local abnormality detection in crowded scenes. IEEE Trans. on Cybernetics, 2013, 43(6): 2147-2156.
    26 Yufeng C, Liang GY, Lee KK, Xu YS. Abnormal behavior detection by multi-SVM based Bayesian network. International Conference on Information Acquisition. Jeju City. Curran Associates, Inc. 2007. 298-303.
    27 Mahadevan V, Li WX, Bhalodia V, Vasconcelos N. Anomaly detection in crowded scenes. IEEE Conference on Computer Vision and Pattern Recognition. San Francisco. Curran Associates, Inc. 2010. 1975-1981.
    28 Bouttefroy PLM, Bouzerdoum A, Phung SL, Beghdadi A. Local estimation of displacement density for abnormal behavior detection. IEEE Workshop on Machine Learning for Signal Processing. Cancun. Curran Associates, Inc. 2008. 386-391.
    29 Mehran R, Oyama A, Shah M. Abnormal crowd behavior detection using social force model. IEEE Conference on Computer Vision and Pattern Recognition. Miami. Curran Associates, Inc. 2009. 935-942.
    30 Duque D, Santos H, Cortez P. Prediction of abnormal behaviors for intelligent video surveillance systems. IEEE Symposium on Computational Intelligence and Data Mining. Honolulu:Curran Associates, Inc. 2007. 362-367.
    31 Rodriguez M, Ali S, Kanade T. Tracking in unstructured crowded scenes. IEEE in International Conference on Computer Vision. Kyoto. Curran Associates, Inc. 2009. 1389-1396.
    32 UCSD Anomaly Detection Dataset, http://www.svcl.ucsd. edu/projects/anomaly/dataset.htm.
    33 UMN Crowd Dataset, http://mha.cs.umn.edu/projevents. shtml#crowd.
    34 Ali S, Shah M. A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis. CurranAssociates, Inc. 2007. 1-6.
    35 Violence-flows Dataset, http:. www.openu.ac.il/ home/hassner/ data/violentflows/index.html.
    36 Wang X, Ma X, Grimson WEL. Unsupervised activity perception in crowded and complicated scenes using hierarchical bayesian models. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009, 31(3): 539-555.
    37 Loy CC, Chen K, Gong S, Xiang T. Crowd counting and profiling: Methodology and evaluation. Modeling, Simulation and Visual Analysis of Crowds, Springer. 2013, 11: 347-382.
    38 PETS2009 Dataset, http://www.cvg.rdg.ac.uk/PETS2009.
    39 Rodriguez M, Sivic J, Laptev I, Audibert JY. Data-driven crowd analysis in videos. IEEE International Conference on Computer Vision. Barcelona. Curran Associates, Inc. 2011. 1235-1242.
    40 Adam A, Rivlin E, Shimshoni I, Reinitz D. Robust real-time unusual event detection using multiple fixed-location monitors. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2008, 30(3): 555-560.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

魏永超,庄夏,傅强.人群异常识别技术研究进展.计算机系统应用,2016,25(9):10-16

复制
分享
文章指标
  • 点击次数:2441
  • 下载次数: 9394
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2015-12-18
  • 最后修改日期:2016-03-01
  • 在线发布日期: 2016-09-14
文章二维码
您是第11508284位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号