基于稀疏字典的听觉显著性计算
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

四川省科技支撑项目(2011SZ0123,2013GZ1043)


Auditory Saliency Calculation Based on Sparse Dictionary
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    听觉注意显著性计算模型是研究听觉注意模型的基本问题,显著性计算中选择合适的特征是关键,本文从特征选择的角度提出了一种基于稀疏字典学习的听觉显著性计算模型.该模型首先通过K-SVD字典学习算法学习各种声学信号的特征,然后对字典集进行归类整合,以选取的特征字典为基础,采用OMP算法对信号进行稀疏表示,并直接将稀疏系数按帧合并得到声学信号的听觉显著图.仿真结果表明该听觉显著性计算模型在特征选择上更符合声学信号的自然属性,基于基础特征字典的显著图可以突出噪声中具有结构特征的声信号,基于特定信号特征字典的显著图可以实现对特定声信号的选择性关注.

    Abstract:

    Auditory attention saliency computation model is one of the fundamental problems in the study of auditory attention model, and the key of this model is the selection of appropriate features. In this paper, an auditory significance calculation model based on sparse dictionary learning is proposed from the view of feature selection. The first step is getting the characteristics of a variety of acoustic signals by the K-SVD dictionary learning algorithm. Then the dictionary set is classified and integrated. Based on a selected feature dictionary, OMP algorithm is used for signal sparse representation. And the sparse coefficients are combined frame by frame to obtain the auditory saliency map. The simulation results show that this auditory saliency map computation model can achieve better correspondence characteristic with the nature attribute of acoustic signal in feature selection. The saliency map based on dictionary of basic characteristics can highlight the structure characteristics of noisy acoustic signal. The saliency map based on dictionary of special characteristics can achieve selective attention for certain signals.

    参考文献
    相似文献
    引证文献
引用本文

陈曦,夏秀渝.基于稀疏字典的听觉显著性计算.计算机系统应用,2016,25(4):201-205

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-08-12
  • 最后修改日期:2015-09-21
  • 录用日期:
  • 在线发布日期: 2016-04-19
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号