摘要:听觉注意显著性计算模型是研究听觉注意模型的基本问题,显著性计算中选择合适的特征是关键,本文从特征选择的角度提出了一种基于稀疏字典学习的听觉显著性计算模型.该模型首先通过K-SVD字典学习算法学习各种声学信号的特征,然后对字典集进行归类整合,以选取的特征字典为基础,采用OMP算法对信号进行稀疏表示,并直接将稀疏系数按帧合并得到声学信号的听觉显著图.仿真结果表明该听觉显著性计算模型在特征选择上更符合声学信号的自然属性,基于基础特征字典的显著图可以突出噪声中具有结构特征的声信号,基于特定信号特征字典的显著图可以实现对特定声信号的选择性关注.