基于暗通道和小波的单幅图像烟雾检测算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

福建省自然科学基金(2013J01186,2012J01263)


Smoke Detection Algorithm of Single Image Based on Dark Channel And Wavelet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对单幅图像烟雾检测算法的研究较少,而基于烟雾颜色模型的方法易受疑烟区域的干扰等问题,提出了一种多级筛选的单幅图像烟雾检测算法.该算法首先对经过导向滤波优化过的暗通道透射率图做二值化处理,快速去除高透射率干扰区域,得低透射率区域;然后分别对去雾前后的低透射率区域提取YCbCr颜色空间的Cr通道并差分二值化,去除一些静态背景干扰区域,得疑烟区域;最后分别对去雾前后疑烟区域的Y通道做二维离散小波变换,根据小波能量做差并二值化,得烟雾区域.实验结果表明,本算法能够有效消除图像中的疑烟区域的干扰,准确检测出烟雾区域.

    Abstract:

    To solve some problems of the single image smoke detection, such as, the study of single image smoke detection is less and smoke detection method of single image based on color model is easily influenced by the color suspected smoke area, we propose a Multilevel filter algorithm of single image smoke detection. Firstly, for the dark channel transmittance chart optimized by the guide filter, the algorithm carries out binaryzation on the image according to certain threshold, which make it fast to remove the interference area of high transmittance and obtain the low transmittance area. Then it removes the smoke in the low transmittance area, extracts the Cr channel of YCbCr color space before and after smoke removal, subtracts and carries out binaryzation, further removes some static background interference area thereby obtains the suspected smoke area. Finally it extracts the Y channel of YCbCr color space on the suspected smoke area before and after smoke removal, transforms to two-dimensional discrete wavelet, and makes difference according to the wavelet energy, thereby obtains the final smoke area. Experimental results show that the proposed algorithm can effectively eliminate the interference of the color suspected smoke region in the image, and detect the smoke area accurately.

    参考文献
    相似文献
    引证文献
引用本文

张汉营,刘秉瀚.基于暗通道和小波的单幅图像烟雾检测算法.计算机系统应用,2016,25(3):199-203

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-07-06
  • 最后修改日期:2015-09-06
  • 录用日期:
  • 在线发布日期: 2016-03-17
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号