基于Hadoop的公共建筑能耗数据挖掘方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山东省住房和城乡建设厅项目(2013-HT-01)


Data Mining Method for Public Buildings Energy Consumption Based on Hadoop
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对建筑能耗数据无法有效利用这一问题,提出利用Hadoop分布式架构,结合建筑基本信息对公共建筑能耗数据进行数据挖掘的方法.对基于Hadoop的公共建筑能耗数据挖掘系统进行了初步设计,并对系统的基本架构和各模块的功能进行了设计和说明.同时,对Apriori算法和C4.5算法实现MapReduce分布式设计.以山东省100栋办公建筑制冷期的空调系统耗电量为例进行实验分析,得到6类建筑信息属性对空调系统能耗的影响规律,并生成空调系统耗电量判定树,可判别建筑空调系统耗电量等级,并对样本建筑的节能改造提供具有针对性的建议.

    Abstract:

    The utilization of building energy consumption data is still inefficient. According to this problem, in this paper, a new method based on Hadoop for data mining of public buildings energy consumption combining with building information is proposed. The paper designs the data mining system of public building energy consumption based on Hadoop, and performs designs and illustrations to the basic framework and functional modules. Apriori algorithm and C4.5 algorithm are implemented distributively using MapReduce programming model. The paper takes 100 office buildings in Shandong Province as examples to analyse the data of air conditioning system energy consumption. The experimental conclusions are the influence rules of 6 kinds of building information on air conditioning system energy consumption. Moreover, the experiment obtains the decision tree of air conditioning system energy consumption. According to the decision tree, we can distinguish the energy consumption level of air conditioning system, and offer targeted advice on energy saving renovation of sample buildings.

    参考文献
    相似文献
    引证文献
引用本文

王磊,张永坚,贾继鹏,牛晓光,聂昌龙.基于Hadoop的公共建筑能耗数据挖掘方法.计算机系统应用,2016,25(3):34-42

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-06-04
  • 最后修改日期:2015-08-31
  • 录用日期:
  • 在线发布日期: 2016-03-17
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号