基于信息扩散概率的二分网络社区划分算法
作者:

Community Division of Bipartite Network Based on Information Transfer Probability
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    二分网络是复杂网络的表现形式之一,二分网络单侧节点的社区划分对研究复杂网络具有重要的实际意义.基于信息在网络中的扩散概率和模块度思想,本文提出了一个针对二分网络的社区划分聚类算法(IPS算法).该算法通过模拟信息在网络中扩散的过程,利用各个节点的信息量在网络中扩散后,每个节点收到其他节点的信息量作为社区之间合并的依据,并引入二分网络模块度作为社区划分优劣判断的依据.最后算法在典型网络上测试结果表明,该算法不仅能够精确的识别二分网络社区个数,而且可以获得高质量的社区划分结果.

    Abstract:

    Bipartite network is a performance of complex networks, the divided of unilateral node of bipartite network has important practical significance for the study of complex networks of community division. Based on the idea of information transfer probability, this paper presents a community of bipartite network divided clustering algorithm (IPS algorithm). The algorithm simulates the probability of information transfer in the network, through mutual support value between the nodes in network.select the max value as the basis for merger different communities and introduction of bipartite network module as a basis for judging the merits of community division. Finally, we using actual network test the performance of the algorithm. Experimental results show that the algorithm can not only accurate divided the unilateral node of bipartite network, but also can get high quality community division.

    参考文献
    1 汪小帆,李翔,陈关荣.复杂网络理论及其应用.北京:清华大学出版社,2006.
    2 Newman MEJ. Scientific collaboration networks.I. network construction and fundamental results. Physical Review E, 2001,64:016131
    3 Newman MEJ. Scientific collaboration networks. Ⅱ. Shortest paths,weighted networks, and centrality. Physical Review E,2001,64:016132
    4 刘爱芬,付春花,张增平等.中国大陆电影网络的实证统计研究.复杂系统与复杂性科学,2007,4(3):10-16.
    5 陈文琴,陆君安,梁佳.疾病基因网络的二分图投影分析.复杂系统与复杂科学,2009,6(1):13-19.
    6 Lambiotte R, Ausloos M. Uncovering collective listening habits and music genres in bipartite network. Physical Review E, 2005,72:066107.
    7 Le Blond S, Guillaume JL, Latapy M. Clustering in P2Pexchanges and consequences on performances. In:Castro M, Renesse R, eds. Peer-to-Peer Systems IV. Berlin:Heidelberg, 2005:193-204.
    8 徐永成,陈崚.基于蚁群优化的二分网络社区挖掘.计算机科学与探索,2014,8(3):286-304.
    9 陈伯伦,陈崚,邹盛荣等.基于矩阵分解的二分网络社区挖掘算法.计算机科学,2014,41(2):55-101.
    10 吴亚晶,狄增如,樊瑛.基于资源分布矩阵的二分网络网聚类方法.北京师范大学学报,2010,46(5):643-646.
    11 高明.二分网络社团发现算法研究.合肥:合肥工业大学, 2012.
    12 Raghavan UN, Albert R, Kumara S. Near linear time algorithm to detect community structures in large-scale networks. Physical Review E, 2007,76:036106
    13 Liu X, Murata T. Community detection in large-scale bipartite newworks. Proc. of the 2009IEEE/WIC/ACM International Joint conference on Web Intelligence and Intelligent Agent Technology(WI-IAT'09). Washington, DC, IEEE Computer Society, 2009:5-8.
    14 Dorigo M, Maniezzo V, Colorni A. Ant system:optimization by a colony of cooperating agents. IEEE Trans. on Systems, Man, and Cybernetics:Part B, 1996,26(1):29-41.
    15 Barber MJ. Modularity and community detection in bipartite networks. Physical Review E, 2007,76:066102.
    16 Newman M E J.Modularity and community structure in networks. Proc. of the National Academy of Sciences of the United States of America. 2006, 103(23):8577-8582.
    17 Milgram S. The small world problem. Psychology Today, May 1967:60-67.
    18 Davis A, Gardner BB, Gardner MR. Deep south. Chicago:University of Chicago Press, 1941.
    19 Scott J, Hughes M. The anatomy of Scottish capital:Scottish companies and Scottish capital, 1990-1979. London:Croom Helm, 1980.
    20 Fan CL,Yu L. 2nd International Conference on Mechatronic Sciences, Electric Engineering and Computer, (MEC2013) ShenYang, China, 2013.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张弛,周永刚,范纯龙,唐桂林.基于信息扩散概率的二分网络社区划分算法.计算机系统应用,2015,24(12):239-242

复制
分享
文章指标
  • 点击次数:1565
  • 下载次数: 2420
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2015-04-09
  • 最后修改日期:2015-06-11
  • 在线发布日期: 2015-12-04
文章二维码
您是第11307969位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号