基于MapReduce的高效用序列模式挖掘算法
作者:

High Utility Sequential Pattern Mining Algorithm Based on MapReduce
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    由于数据规模的快速增长,高效用序列模式挖掘算法效率严重下降.针对这种情况,提出基于MapReduce的高效用序列模式挖掘算法HusMaR.算法基于MapReduce框架,使用效用矩阵高效地生成候选项;使用随机映射策略均衡计算资源;使用基于领域的剪枝策略来防止组合爆炸.实验结果表明,在大规模数据集下,算法取得了较高的并行效率.

    Abstract:

    Because of the rapid growth of data, the high utility sequential pattern mining algorithms' efficiency decreases seriously. In view of this, we propose a high utility sequential pattern mining algorithm based on MapReduce, namely HusMaR. This algorithm is based on MapReduce, which using the utility matrix to generate candidate efficiently, random mapping strategy to balance of computing resources and field-based pruning strategy to prevent an explosion. Experimental results show that in the large scale of data, the algorithm achieves a high parallel efficiency.

    参考文献
    1 Zaki MJ. SPADE:An efficient algorithm for mining frequent sequences. Machine Learning, 2001, 42(1-2):31-60.
    2 Pei J, Pinto H, Chen Q, et al. Prefixspan:Mining sequential patterns efficiently by prefix-projected pattern growth. IEEE 29th International Conference on Data Engineering (ICDE). IEEE Computer Society, 2001.
    3 Ayres J, Flannick J, Gehrke J, et al. Sequential pattern mining using a bitmap representation. Proc. of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2002:429-435.
    4 Yin J, Zheng Z, Cao L. Uspan:an efficient algorithm for mining high utility sequential patterns. Proc. of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2012:660-668.
    5 Shie BE, Hsiao HF, Tseng VS, et al. Mining high utility mobile sequential patterns in mobile commerce environments. Database Systems for Advanced Applications. Springer Berlin Heidelberg, 2011:224-238.
    6 Ahmed CF, Tanbeer SK, Jeong BS. A novel approach for mining high-utility sequential patterns in sequence databases. ETRI Journal, 2010, 32(5):676-686.
    7 Dean J, Ghemawat S. MapReduce:simplified data processing on large clusters. Communications of the ACM, 2008, 51(1):107-113.
    8 Wei Y, Liu D, Duan L. Distributed PrefixSpan algorithm based on MapReduce. 2012 International Symposium on Information Technology in Medicine and Education (ITME). IEEE, 2012, 2:901-904.
    9 Chen CC, Tseng CY, Chen MS. Highly scalable sequential pattern mining based on MapReduce model on the cloud. 2013 IEEE International Congress on Big Data. IEEE, 2013:310-317.
    10 Agrawal R, Srikant R. Mining sequential patterns. Proc. of the 11th Int. Conf. on Data Engineering, 1995. IEEE, 1995:3-14.
    11 Fournier-Viger P, Wu CW, Gomariz A, et al. VMSP:Efficient Vertical Mining of Maximal Sequential Patterns. Advances in Artificial Intelligence. Springer International Publishing, 2014:83-94.
    12 Yin J, Zheng Z, Cao L, et al. Efficiently mining top-K high utility sequential patterns. 2013 IEEE 13th International Conference on Data Mining,. IEEE, 2013:1259-1264.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

程思远,马超,李聪聪.基于MapReduce的高效用序列模式挖掘算法.计算机系统应用,2015,24(12):228-232

复制
分享
文章指标
  • 点击次数:2784
  • 下载次数: 2873
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2015-04-07
  • 最后修改日期:2015-05-12
  • 在线发布日期: 2015-12-04
文章二维码
您是第12463764位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号