摘要:为了克服极限学习机(ELM)稳定性差、识别率不高的缺陷, 利用支持向量机(SVM)一对一投票式分类算法准确度高的优势, 提出一种改进的表情识别方法. 该方法将一对一分类算法和ELM算法相结合形成一个新的算法即OAO-ELM(One-Against-One-Extreme Learning Machine), 首先, 对样本采用一对一的分类并利用ELM训练成一个弱分类器, 然后, 将这些弱分类器组合成一个最终的强分类器. 预测结果, 采用投票方式. 用Gabor滤波提取表情特征, 由于提取后特征维度很高, 冗余大, 引入主成分分析(PCA)来降维. 基于JAFFE数据库实验结果表明, 该算法在人脸表情识别上具有较高分类识别率和稳定性.