摘要:基于特征点的图像匹配被广泛应用于图像配准、目标识别与跟踪领域, 目前, 两阶段匹配(即先粗匹配, 后精匹配)是最常用的方法, 然而, 两阶段匹配存在两方面的问题, 一方面, 粗匹配阶段对精匹配阶段的影响是不可逆的, 即粗匹配的效果决定了精匹配的最优精度; 另一方面, 精匹配得到的后验知识没能反馈给粗匹配阶段, 以修正粗匹配结果. 为此, 提出一种基于迭代修正的图像特征点匹配算法, 该算法将精匹配得到的后验知识反馈给粗匹配阶段, 从而修正粗匹配结果, 使得粗匹配阶段得到更多的正确匹配对, 减少漏匹配特征点对, 这样经过多次迭代, 能够得到更多的正确匹配特征点对. 实验表明, 提出的算法比经典的两阶段匹配方法能够提取更多的正确匹配特征点对, 减少了漏匹配, 并提升了复杂图像匹配的稳定性.