摘要:模糊C均值聚类是一种有效的图像分割方法, 但存在因忽略空间上下文信息和结构信息而易为噪声所干扰的现象. 为此提出了DCT子空间的邻域加权模糊C均值聚类方法. 该方法首先结合分块的思想, 对图像块进行离散余弦变换(discrete cosine transform,DCT), 建立了一个基于图像块局部信息的相似性度量模型; 然后定义目标函数中的欧式距离为邻域加权距离; 最后将该方法应用于加噪的人工合成图像、自然图像和MR图像. 实验结果表明, 该方法能够获得较好的分割效果, 同时具有较强的抗噪性.