摘要:隐马尔可夫模型是对DNA序列建模的一种简单且有效的模型, 实际应用中通常采用一阶隐马尔可夫模型. 然而, 由于其一阶无后效性的特点, 一阶隐马尔科夫模型无法表示非相邻碱基间的依赖关系, 从而导致序列中一些有用统计特征的丢失. 本文在分析DNA序列特有的生物学构造的基础上, 提出一种用于DNA序列分类的二阶隐马尔可夫模型, 该模型继承了一阶隐马尔可夫模型的优点, 充分表达了蕴涵在DNA序列中的生物学统计特征, 使得新模型具有明确的生物学意义. 基于新模型, 提出一种DNA序列的贝叶斯分类新方法, 并在实际DNA序列上进行了实验验证. 实验结果表明, 由于二阶隐马尔可夫模型充分反映了DNA序列碱基间的结构信息, 新方法有效地提高了序列的分类精度.