基于聚类和类重叠分析的近邻分类
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Neighbor Classification Based on Clustering and Class Overlapping Analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    k近邻分类(kNN)是一种简单而有效的非参数分类算法, 但存在着参数需要人工确定, 没有显式构建分类模型造成存储空间大、分类效率低, 且易受到“维灾”效应影响等缺点. 针对这些缺点, 提出一种高效的近邻分类新方法, 构造了两个新的近邻分类器. 新方法使用由K均值聚类产生的优化的簇原型集合为分类模型, 减少了存储空间的同时提高了分类效率; 提出三种类重叠分析策略并引入模糊基准度量以减轻维灾影响. 以该分类模型学习方法为基础, 提出一种新的kNN分类器和组合朴素贝叶斯的新分类器, 算法涉及的参数都可以自动确定. 在人工和现实数据集上进行的实验表明, 新分类器具有良好的分类效率和分类准确率.

    Abstract:

    K-nearest neighbor classifier (kNN) is a simple and effective non-parametric classification algorithm. The major drawbacks of the kNN include parameters to be determined manually, its low efficiency in testing phase and suffered effect of “curse of dimensionality”. An efficient method is proposed that constructing a new kNN classifier and Naive Bayes combination classifier. K-means clustering is used to build an optimal set of cluster prototype, reducing storage space while improving the classification efficiency and determining automatically parameters. Using three types of overlapping analysis strategies and fuzzy norms measure are to relieve impacts of “curse of dimensionality”. Experimental results on both synthetic and real-world data sets show that the new classifier has good classification efficiency and classification accuracy.

    参考文献
    相似文献
    引证文献
引用本文

刘杜钢.基于聚类和类重叠分析的近邻分类.计算机系统应用,2015,24(9):1-8

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-12-30
  • 最后修改日期:2015-03-02
  • 录用日期:
  • 在线发布日期: 2015-09-14
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号