基于改进Adaboost集成学习的空间目标识别
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61231016, No.61301192);河南省科技攻关计划项目(142102210557)


Space Target Recognition Method Based on Improved Adaboost Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对空间目标的不合作性特点以及Adaboost集成学习算法的过拟合问题, 提出了一种基于组合特征和改进Adaboost的空间目标图像识别算法. 将空间目标图像的几何特征和变换特征进行融合, 从不同的方面更精确地描述目标信息, 并对Adaboost算法进行改进, 根据样本在权重上的分布情况, 在训练时进行分段更新权重, 从而缓解分类器的过拟合现象, 提高目标识别的稳定性. 通过仿真实验证明, 与传统的Adaboost算法相比, 本文算法在空间目标图像识别中取得了更好的效果.

    Abstract:

    Due to the non-cooperative character of space target and the overfitting of adaboost algorithm under high noises, an space target recognition method based on combined features and improved adaboost is proposed. The combined features which consist of the geometric features and transform features are extracted to describe target information precisely from different aspects. Furthermore, an improved adaboost algorithm is presented, which adopts a new weights updating method piecewisely in the light of the weights distribution of samples. Thus the proposed method can avoid the overfitting problem and improve the robustness of classification. Experiments on space target images showed that the proposed method has better classification capability and obtains higher classification accuracy.

    参考文献
    相似文献
    引证文献
引用本文

李垒,任越美.基于改进Adaboost集成学习的空间目标识别.计算机系统应用,2015,24(8):202-205

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-12-19
  • 最后修改日期:2015-02-09
  • 录用日期:
  • 在线发布日期: 2015-09-03
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号