基于组合优化理论的用电量预测模型
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Electricity Consumption Prediction Based on Combination Optimization Theory
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高用电量的预测精度, 提出了一种基于组合优化理论的用电量预测模型(AFSA-LSSVM). 首先相空间重构用电量学习样本, 然后将学习样本输入到最小二乘支持向量机进行训练, 并采用人工鱼群算法优化LSSVM参数, 建立最优的用电量预测模型, 最后采用仿真实验对模型性能进行测试. 结果表明, 相对于对比模型, AFSA-LSSVM可以准确刻画用电量的变化趋势, 提高用电量的预测精度, 预测结果更加可靠, 可以为决策者提供有价值决策信息.

    Abstract:

    In order to improve the prediction precision, a novel electricity consumption prediction model is proposed based on combination optimization theory. Firstly, the learning samples is obtained by phase space reconstruction. Then the learning samples are input into least square support vector machine and train, which the parameters of model are optimized by artificial fish swarm algorithm, and electricity consumption prediction model is established. Finally, the performance of model is test by simulation experiment. The results show that the proposed model can describe electricity consumption change rule, and improve the prediction precision.

    参考文献
    相似文献
    引证文献
引用本文

陈景柱.基于组合优化理论的用电量预测模型.计算机系统应用,2015,24(8):176-180

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-12-12
  • 最后修改日期:2015-02-02
  • 录用日期:
  • 在线发布日期: 2015-09-03
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号