基于属性选择的改进加权朴素贝叶斯分类算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家科技重大专项(2012ZX10004-301-609);国家自然科学基金(61272472,61232018,61202404);安徽省教学研究计划2010


Improved Weighted Naive Bayes Classification Algorithm Based on Attribute Selection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    朴素贝叶斯分类算法简单且高效, 但其基于属性间强独立性的假设限制了其应用范围. 针对这一问题, 提出一种基于属性选择的改进加权朴素贝叶斯分类算法(ASWNBC). 该算法将基于相关的属性选择算法(CFS)和加权朴素贝叶斯分类算法(WNBC)相结合, 首先使用CFS算法获得属性子集使简化后的属性集尽量满足条件独立性, 同时根据不同属性取值对分类结果影响的不同设计新权重作为算法的加权系数, 最后使用ASWNBC算法进行分类. 实验结果表明, 该算法在降低分类消耗时间的同时提高了分类准确率, 有效地提高了朴素贝叶斯分类算法的性能.

    Abstract:

    Naive Bayes Classification is simple and effective, but its strong attribute independency assumption limits its application scope. Concerning this problem, an improved WNBC algorithm is proposed based on attribute selection. This algorithm combines CFS algorithm with WNBC algorithm, it firstly uses CFS algorithm to get an attribute subset so that the simplified attribute subset can meet conditional independency; meanwhile, the algorithm's weighting coefficient is designed on that different attribute values have different influences on the classification result. Finally, it uses ASWNBC algorithm to classify datasets. The experimental results show that the proposed algorithm improves the classification accuracy with lower time consumption, therefore heightens the performance of NBC algorithm.

    参考文献
    相似文献
    引证文献
引用本文

王行甫,杜婷.基于属性选择的改进加权朴素贝叶斯分类算法.计算机系统应用,2015,24(8):149-154

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-12-02
  • 最后修改日期:2015-01-26
  • 录用日期:
  • 在线发布日期: 2015-09-03
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号