摘要:随着互联网技术的发展, 个性化标签推荐系统在海量信息或资源过滤中起着重要的角色. 在新浪微博平台中, 用户可以自主的给自己添加标签来表明自己的兴趣爱好. 同时, 用户也可以通过标签来搜索与自己兴趣爱好相似的用户. 针对新浪微博中大部分用户没有添加标签或添加标签数目较少的问题, 提出了一种基于RBLDA模型和交互关系的微博标签推荐算法, 它首先利用RBLDA模型来产生用户的初始标签列表, 然后再结合用户的交互关系而形成的交互图来预测用户标签的算法. 通过在新浪微博真实数据集上的实验发现, 该方案与传统的标签推荐算法相比, 取得了良好的实验效果.