基于增量队列的在全置信度下的关联挖掘
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Association Mining on Massive Text under Full Confidence Based on Incremental Queue
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    关联挖掘是一种重要的数据分析方法, 提出了一种在全置信度下的增量队列关联挖掘算法模型, 在传统的FP-Growth及PF-Tree算法的关联挖掘中使用了全置信度规则, 算法的适应性得到提升, 由此提出FP4W-Growth算法并运用到对文本数据的关联计算以及对增量式的数据进行关联性挖掘的研究中, 通过实验验证了此算法及模型的可行性与优化性, 为在庞大的文本数据中发现隐藏着的先前未知的并潜在有用的新信息和新模式, 提供了科学的决策方法.

    Abstract:

    Association mining is an important data analysis method, this article proposes an incremental queue association mining algorithm model under full confidence,using the full confidence rules in the traditional FP-Growth and PF-Tree association mining algorithm can improve the algorithm adaptability. Thus, the article proposes FP4W-Growth algorithm, and applies this algotithm to the association calculation of text data and association mining of incremental data. Then this paper conducted verification experiment. The experimental results show the feasibility of this algorithm and model. The article provides a scientific approach to finding hidden but useful information and patterns from large amount of text data.

    参考文献
    相似文献
    引证文献
引用本文

刘炜.基于增量队列的在全置信度下的关联挖掘.计算机系统应用,2015,24(8):133-136

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-11-26
  • 最后修改日期:2015-01-19
  • 录用日期:
  • 在线发布日期: 2015-09-03
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号