小波神经网络在教育网格下行流量预测中的应用
作者:
基金项目:

汕头职业技术学院科研课题(SZY2013Y11)


Application of Wavelet Neural Network in Educational Grid Downlink Traffic Prediction
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [9]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    准确预测教育资源网格的下行流量有助于网格的负载均衡和信息安全管理. 小波神经网络适合于对具有随机性和不确定性特征的网格下行流量进行建模和非线性预测. 针对一般小波神经网络预测模型存在收敛速度较慢, 误差较大, 稳定性较差等不足, 在基于梯度下降法的网络权值和参数修正方案中增加了动量项, 同时, 提出了一种对预测的中间结果引入随机样本替换机制的改进算法. 实验结果表明, 该算法能有效降低网络训练的收敛时间, 提高网络预测的准确性和稳定性.

    Abstract:

    Accurate predicted the downlink traffic contributes to traffic load balancing and information security management in educational resources grid. Wavelet neural network is suitable for modeling and nonlinear prediction in grid downlink traffic which has the randomness and uncertainty characteristic. General wavelet neural network prediction model had some defects such as convergence slower, larger error and poor stability. In order to eliminate or improve the existing defects, a momentum was added in the scheme which was used to adjust the network weights and parameters based on gradient descent algorithm, meanwhile, an improved algorithm with random sample replacement mechanism in temporarily prediction results was proposed. Experimental results show that the proposed algorithm can reduce the convergence time in network training and improve the prediction accuracy and stability.

    参考文献
    1 Zhao H, Gao S, He ZY, Zeng XP, Jin WD, Li TR. Identification of nonlinear dynamic system using a novel recurrent wavelet neural network based on the pipelined architecture. IEEE Trans. on Industrial Electronics, 2014, 61(8): 4171-4182.
    2 Guan C, Luh PB, Michel LD, Wang YT, Friedland PB. Very short-term load forecasting: Wavelet neural networks with data pre-filtering. IEEE Trans. on Power Systems, 2013, 28(1): 30-41.
    3 Senkal S, Ozgonenel O. Performance analysis of artificial and wavelet neural networks for short term wind speed prediction. 2013 8th International Conference on Electrical and Electronics Engineering (ELECO). 2013. 196-198.
    4 Liu JW, Wang P, Liu H, Yang L. Time series predictive wavelet neural network control method. The 26th Control and Decision Conference (2014 CCDC). 2014. 359-364.
    5 Yilmaz S, Oysal Y. Fuzzy wavelet neural network models for prediction and identification of dynamical systems. IEEE Trans. on Neural Networks, 2010, 21(10): 1599-1609.
    6 Zhou B, Shi AG. Application of wavelet neural network for chaos time series prediction. 2013 Fifth International Conference on Intelligent Human-Machine Systems and Cybernetics. 2013. 259-262.
    7 Zhang R, Chai YP, Fu XA. A network traffic prediction model based on recurrent wavelet neural network. 2012 2nd International Conference on Computer Science and Network Technology (ICCSNT). 2012. 1630-1633.
    8 Wang J, Xia YJ. Prediction of smart substations' network traffic based on improved particle swarm wavelet neural networks. 2013 IEEE International Symposium on Industrial Electronics (ISIE). 2013. 1-7.
    9 Gao JW, Leng ZW, Qin Y et al. Short-term traffic flow forecasting model based on wavelet neural network. Proc. of 2013 25th Control and Decision Conference (CCDC). 2013. 5081-5084.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邱树伟,李琰琰.小波神经网络在教育网格下行流量预测中的应用.计算机系统应用,2015,24(5):198-204

复制
分享
文章指标
  • 点击次数:1212
  • 下载次数: 2293
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2014-10-20
  • 最后修改日期:2014-12-01
  • 在线发布日期: 2015-05-15
文章二维码
您是第11307563位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号