协同过滤推荐算法对比分析与优化应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61300104)


Collaborative Filtering Recommendation Algorithm Analysis and Optimization Applications
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    协同过滤推荐算法分为基于内存和基于模型的推荐算法, 协同过滤推荐算法存在数据稀疏性、可扩展性、冷启动等问题. 通过基于用户、基于项目协同过滤推荐算法以及SVD、Slope-One、KNN等基于模型协同过滤推荐算法对比分析. 提出加入特征向量维度优化的SVD算法, 通过降维改善数据稀疏性问题. 利用Hadoop分布式平台改善推荐算法可扩展性问题. 基于MovieLens数据集实验结果表明, 引入基于Boolean相似性计算方法的推荐效果更优, 引入数量权重和标准差权重的优化Slope-One算法和引入特征向量维度的优化SVD算法推荐效果更优.

    Abstract:

    The collaborative filtering recommendation algorithm is divided into user-based and item-based recommendation algorithms. Collaborative filtering recommendation algorithm had data-sparseness and scalability and cold-start problems. This paper mainly studied the collaborative filtering recommendation algorithm based on the users or Items and SVD, Slope-One, KNN. The optimization of SVD algorithm which considers the dimension of the feature space used dimension reduction to improve data-sparseness problem. Using the Hadoop distribution platform to improve the scalability problem. Experimental result shows that the similarity computation method based on Boolean data has better result and the optimization of Slope-One and SVD algorithm have better recommendation result based on MovieLens data set.

    参考文献
    相似文献
    引证文献
引用本文

张学钱,林世平,郭昆.协同过滤推荐算法对比分析与优化应用.计算机系统应用,2015,24(5):100-105

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-09-13
  • 最后修改日期:2014-10-20
  • 录用日期:
  • 在线发布日期: 2015-05-15
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号