基于视觉词袋模型的人耳识别
作者:

Human Ear Recognition Based on Visual Bag-of-Words Model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    人耳识别技术是生物特征识别和人工智能领域的一个重要分支. 针对人耳图像特有的纹理特征, 首先采用空间金字塔视觉词袋模型进行人耳特征提取, 该模型将人耳图像中相对低级的局部描述子特征转化为具有高级语义含义的全局特征. 最后采用支持向量机对样本向量进行训练与判别. 实验表明, 本文所采用的模型能取得较高的识别率, 可作为人耳识别方法的一种扩展与探索.

    Abstract:

    Human ear recognition is one of the most important branches in biometrical recognition and artificial intelligence fields. In this paper, considering the unique texture feature of human ear image, the spatial pyramid visual bag-of-words model was adopted. It transforms the relatively low-level local descriptors of human ear images into global features to preserve the high-level semantic meanings. The support vector machine classifier is utilized to perform the training and recognition task. Experimental results demonstrate that the adopted model could achieve a better accuracy, as an extension and exploration in human ear recognition methods.

    参考文献
    1 Burge M, Burger W. Using ear biometrics for passive identification. Proc. of the IFIP TC11 14th International Conference on Information Security (SEC). 1998, 98. 139-148.
    2 Victor B, Bowyer K, Sarkar S. An evaluation of face and ear biometrics. Proc. 16th International Conference on Pattern Recognition, 2002. IEEE. 2002, 1. 429-432.
    3 田莹,苑玮琦.尺度不变特征与几何特征融合的人耳识别方法.光学学报,2009,28(8):1485-1491.
    4 徐正光,武楠,穆志纯.基于独立分量分析的人耳识别方法.计算机工程,2006,32(19):178-180.
    5 Zeng H, Mu Z, Yuan L, et al. Ear recognition based on the SIFT descriptor with global context and the projective invariants. 5th International Conference on Image and Graphics (ICIG'09). IEEE. 2009. 973-977.
    6 Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
    7 Lowe DG. Object recognition from local scale-invariant features. Proc. of the 7th IEEE International Conference on. Computer Vision. IEEE. 1999, 2. 1150-1157.
    8 Lowe DG. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110.
    9 Selim SZ, Ismail MA. K-means-type algorithms: A generalized convergence theorem and characterization of local optimality. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1984, (1): 81-87.
    10 Lazebnik S, Schmid C, Ponce J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. IEEE Computer Society Conference on. Computer Vision and Pattern Recognition. IEEE. 2006, 2. 2169-2178.
    11 晏庆华.支持向量机算法综述.2008'中国信息技术与应用学术论坛论文集(二),2008.
    12 张学工.关于统计学习理论与支持向量机.自动化学报, 2000,26(1):32-42.
    13 Hsu CW, Lin CJ. A comparison of methods for multiclass support vector machines. IEEE Trans. on Neural Networks, 2002, 13(2): 415-425.
    14 Xu Y, Zeng W. Ear recognition based on centroid and spindle. Procedia Engineering, 2012, 29: 2162-2166.
    15 王瑜,穆志纯,付冬梅,等.基于小波变换和规范型纹理描述子的人耳识别.电子学报,2010,38(1):239-243.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

董坤,王倪传.基于视觉词袋模型的人耳识别.计算机系统应用,2014,23(12):176-181

复制
分享
文章指标
  • 点击次数:1382
  • 下载次数: 2564
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2014-04-10
  • 最后修改日期:2014-05-04
  • 在线发布日期: 2014-12-15
文章二维码
您是第11281336位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号