结合三帧差分的ViBe运动检测算法
作者:
基金项目:

广东省自然科学基金(S2011040004273)


Motion Object Detection Combined ViBe with Three-Frame Differential
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出一种以ViBe算法为基础, 结合三帧差分思想的运动目标检测算法. 利用ViBe算法对每个像素点建模, 当前帧和模型得到的差分图与前一帧得到的差分图再进行与运算, 之后运用ViBe的思想对模型进行实时更新; 同时在每一帧添加小波去噪处理, 去除图像高频区域. 本文算法有效地解决了光照变化对系统的影响, 消除了影子问题, 去除了闪烁背景点. 实验结果表明, 本文算法在多种环境下可以准确地提取运动目标, 达到更好的鲁棒性.

    Abstract:

    Based on ViBe, this paper explores a new moving object detection algorithm combining with the three frame difference method. Firstly, we build model on every pixels of the background with the advantage of ViBe; then, do the logic AND operation between two differential images which have been subtracted from the current image and the previous image; lastly, update the model in real time with the idea of ViBe. Meanwhile, in order to remove the high frequency component of the image, we add wavelet denoising to every frame of the image. This algorithm effectively overcomes the effect of illumination change on the system and eliminates the ghost as well as the blinking background pixels. Experiments confirm that this algorithm can accurately extract moving objects in multiple environments and has higher robustness.

    参考文献
    1 Lipton AJ, Fujiyoshi H, Patil RS. Moving target classification and tracking from real-time video. Proc. of Fourth IEEE Workshop on Applications of Computer Vision, WACV'98. IEEE, 1998. 8-14.
    2 Arseneau S, Cooperstock JR. Real-time image segmentation for action recognition. 1999 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing. IEEE, 1999. 86-89.
    3 Barron JL, Fleet DJ, Beauchemin SS. Performance of optical flow techniques. International Journal of Computer Vision, 1994, 12(1): 43-77.
    4 Zhang H, Wu K. A vehicle detection algorithm based on three-frame differencing and background subtraction. 2012 Fifth International Symposium on Computational Intelligence and Design (ISCID). IEEE, 2012, 1: 148-151.
    5 Brutzer S, Hoferlin B, Heidemann G. Evaluation of background subtraction techniques for video surveillance. 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2011. 1937-1944.
    6 Cheng FH, Chen YL. Real time multiple objects tracking and identification based on discrete wavelet transform. Pattern Recognition, 2006, 39(6): 1126-1139.
    7 Gang L, Shangkun N, Yugan Y, et al. An improved moving objects detection algorithm. 2013 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR). IEEE, 2013. 96-102.
    8 Barnich O, Van Droogenbroeck M. ViBe: A universal background subtraction algorithm for video sequences. IEEE Trans. on Image Processing, 2011, 20(6): 1709-1724.
    9 Van Droogenbroeck M, Paquot O. Background subtraction: Experiments and improvements for ViBe. 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2012. 32-37.
    10 Maddalena L, Petrosino A. A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans. on Image Processing, 2008, 17(7): 1168-1177.
    11 Tao G, Zhengguang L, Jun Z. Redundant discrete wavelet transforms based moving object recognition and tracking. Journal of Systems Engineering and Electronics, 2009, 20(5): 1115-1123.
    12 Singh R, Purwar RK, Rajpal N. A better approach for object tracking using dual-tree complex wavelet transform. 2011 International Conference on Image Information Processing (ICIIP). IEEE, 2011. 1-5.
    13 Su Y, Qian R, Ji Z. Surveillance video sequence segmentation based on moving object detection. Second International Workshop on Computer Science and Engineering, WCSE'09. IEEE, 2009, 1. 534-537.
    14 Al-Berry MN, Salem MAM, Hussein AS, et al. Motion detection using wavelet-enhanced accumulative frame differencing. 2013 8th International Conference on Computer Engineering & Systems (ICCES). IEEE, 2013. 255-261.
    15 Toyama K, Krumm J, Brumitt B, et al. Wallflower: Principles and practice of background maintenance. Proc. of the Seventh IEEE International Conference on Computer Vision, 1999. IEEE, 1999, 1: 255-261.
    16 Wang H, Suter D. A consensus-based method for tracking: Modelling background scenario and foreground appearance. Pattern Recognition, 2007, 40(3): 1091-1105.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

严红亮,王福龙,刘志煌.结合三帧差分的ViBe运动检测算法.计算机系统应用,2014,23(11):105-110

复制
分享
文章指标
  • 点击次数:2341
  • 下载次数: 3596
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2014-03-17
  • 最后修改日期:2014-04-21
  • 在线发布日期: 2014-11-20
文章二维码
您是第11232486位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号