基于多代表点学习的RSKNN分类算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61175123)


Multi-Representatives Learning Algorithm for RSKNN Classification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    RSKNN算法是一种基于变精度粗糙集理论的k-近邻改进算法, 该算法能够保证在一定分类精度的前提下, 有效地降低分类的计算量, 提高分类效率. 但由于RSKNN算法只是简单地将每个类中的样本划分成一个核心和边界区域, 并没有根据数据集本身的特点进行划分, 因而存在极大的局限性. 针对存在的问题, 提出一种多代表点学习算法, 运用结构风险最小化理论对影响分类模型期望风险的因素进行分析, 并使用无监督的局部聚类算法学习优化代表点集合. 在UCI公共数据集上的实验表明, 该算法比RSKNN算法具有更高的分类精度.

    Abstract:

    RSKNN is an improved kNN algorithm based on variable parameter rough set model. The algorithm guarantees under the premise of a certain classification accuracy, effectively reduces the computation burden of the classified samples, and improves the computation efficiency and precision of classification. But in this algorithm,the instances of each class are simply classified into core and boundary areas. It has the limitation that it isn't classified according the features of datasets. An efficient algorithm aiming at learning multi-representatives for RSKNN is proposed. Using the theory of structural risk minimization, a few factors that determine the expected risk of new classification model are analyzed. And an unsupervised algorithm for partial clustering is used to build an optimal set of representatives. Experimental results on UCI public datasets demonstrate that the proposed method significantly improves the accuracy of the classification.

    参考文献
    相似文献
    引证文献
引用本文

余勇,郭躬德,陈黎飞.基于多代表点学习的RSKNN分类算法.计算机系统应用,2014,23(11):92-98

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-03-10
  • 最后修改日期:2014-04-21
  • 录用日期:
  • 在线发布日期: 2014-11-20
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号