受限波兹曼机联合稀疏近似的脑功能检测模型
作者:
基金项目:

国家自然科学基金(31170952)


Functional Connectivity Detection Method Based on Restricted Boltzmann Machine and Sparse Approximation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [13]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    人脑功能连通性检测是神经科学研究的重要技术. 使用受限制波兹曼机(Restricted Boltzmann Machine,RBM)对大量多被试功能磁共振(functional Magnetic Resonance Imaging,fMRI)数据进行建模可以检测人脑功能连接,但是不能有效检测单被试数据的功能连接. 本文研究一种新颖的融合了稀疏近似与RBM技术的脑功能连通性检测模型,该模型充分利用fMRI数据的稀疏性,采用稀疏近似理论对fMRI数据进行空间域稀疏近似压缩,然后使用RBM建立模型,以检测脑功能连通性. 实验结果表明,该融合模型可以有效地提取单被试数据的脑功能时间域混合模型及其相应的脑功能图谱,解决了RBM在单被试数据分析上的瓶颈.

    Abstract:

    The human brain functional connectivity detection is an important technique in neuroscience research. The restricted boltzmann machine (RBM), modeling on a large amount of multi-subject functional magnetic resonance imaging (fMRI) data, it can discover the brain functional connectivity. However, the former method with restriction of the huge training data, it can not detect the functional connectivity on single-subject data effectively. In this research, a novel functional connectivity detection model taking advantage of the sparsity is presented, which is an effective combination of the spatial-domain sparse approximation theory and the RBM technique. The experimental results demonstrated that the proposed model could effectively discover both the temporal dynamic model and the corresponding spatial functional maps on the single-subject data, which settled the the bottleneck of RBM.

    参考文献
    1 Li K, Guo L, Nie J, ed. Review of methods for functional brain connectivity detection using fMRI. Computerized Medical Imaging and Graphics, 2009, 33(2): 131-139.
    2 Salakhutdinov R, Mnih A, Hinton G. Restricted Boltzmann machines for collaborative filtering. Proc. of the 24th International Conference on Machine Learning. ACM, 2007: 791-798.
    3 Plis SM, Hjelm DR, Salakhutdinov R, ed. Deep learning for neuroimaging: a validation study. arXiv preprint arXiv: 1312.5847, 2013.
    4 Daubechies I, Roussos E, Takerkart S, ed. Independent component analysis for brain fMRI does not select for independence. Proc. Natl Acad Sci USA 2009, 106(26): 10415-10422.
    5 Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. on Neural Networks, 1999, 10(3): 626-634.
    6 Wang N, Zeng W, Chen L. SACICA: A sparse approximation coefficient-based ICA model for functional magnetic resonance imaging data analysis. Journal of Neuroscience Methods, 2013, 216(1): 49-61
    7 Wang N, Zeng W, Shi Y, ed. WASICA: An effective wavelet-shrinkage based ICA model for brain fMRI data analysis. Journal of Neuroscience Methods[To appare].
    8 Kisilev P, Zibulevsky M, Zeevi YY. A multiscale framework for blind separation of linearly mixed signals. The Journal of Machine Learning Research, 2003, 4: 1339-1363.
    9 Mallat S. A wavelet tour of signal processing. Academic press, 1999.
    10 Gao HY, Bruce AG. WaveShrink with firm shrinkage. Statistica Sinica, 1997, 7(4): 855-874.
    11 Gao HY. Wavelet shrinkage denoising using the non-negative garrote. Journal of Computational and Graphical Statistics, 1998, 7(4): 469-488.
    12 Hinton G. A practical guide to training restricted Boltzmann machines. Momentum, 2010, 9(1): 926.
    13 Tieleman T, Hinton G. Using fast weights to improve persistent contrastive divergence. Proc. of the 26th Annual International Conference on Machine Learning. ACM, 2009. 1033-1040.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

景艳山,曾卫明,王倪传.受限波兹曼机联合稀疏近似的脑功能检测模型.计算机系统应用,2014,23(10):188-182

复制
分享
文章指标
  • 点击次数:1678
  • 下载次数: 3017
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2014-03-01
  • 最后修改日期:2014-04-08
  • 在线发布日期: 2014-10-17
文章二维码
您是第12463808位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号